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We analyze from first principles the advection of particles in a velocity field 
with Hamiltonian H(x,  y)  = V1Y - if2 x + WI (Y)  - W2(x), where Wi, i = 1, 2, 
are random functions with stationary, independent increments. In the 
absence of molecular diffusion, the particle dynamics are very sensitive to the 
streamline topology, which depends on the mean-to-fluctuations ratio 
p = m a x ( I  gtl/U; [ V2t/U), with U =  (I W'll2) m = rms fluctuations. Remarkably, 
the model is exactly solvable for p >/1 and well suited for Monte Carlo simula- 
tions for all p, providing a nice setting for studying seminumerically the 
influence of streamline topology on large-scale transport. First, we consider the 
statistics of streamlines for p = 0, deriving power laws for p~c(L) and (2 (L) ) ,  
which are, respectively, the escape probability and the length of escaping trajec- 
tories for a box of size L, L >> 1. We also obtain a characterization of the 
"statistical topography" of the Hamiltonian H. Second, we study the large-scale 
transport of advected particles with p > 0. For 0 < p < 1, a fraction of particles 
is trapped in closed field lines and another fraction undergoes unbounded 
motions; while for p/> 1 all particles evolve in open streamlines. The fluctuations 
o f  the free particle positions about their mean is studied in terms of the 
normalized variables t -v /2[x( t )  - ( x ( t ) )  ] and t -  v/2 [y(t)  - (y ( t )  ) ]. The large- 
scale motions are shown to be either Fickian (v = 1 ), or superdiffusive (v = 3/2) 
with a non-Gaussian coarse-grained probability, according to the direction of 
the mean velocity relative to the underlying lattice. These results are obtained 
analytically for p ~> 1 and extended to the regime 0 < p < 1 by Monte Carlo 
simulations. Moreover, we show that the effective diffusivity blows up for reso- 
nant values of (Vt, V2) for which stagnation regions in the flow exist. We 
compare the results with existing predictions on the topology of streamlines 
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based on percolation theory, as well as with mean-field calculations of effective 
diffusivities. The simulations are carried out with a CM 200 massively parallel 
computer with 8192 SIMD processors. 

KEY WORDS: Trapping; percolation; superdiffusion. 

1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF THE RESULTS 

Investigations of large-scale transport in heterogeneous media often involve 
monitoring the evolution of a passive scalar in a random, incompressible 
velocity field described by the mass-balance equation 

~C(r, t) 
- - +  V(r).VC(r,  t ) = 0  (1) 

Ot 

For instance, in hydrological modeling of flow in porous media, V(r) 
represents the Darcy velocity of the saturating fluid, and C(r, t) denotes the 
concentration of a solute spreading in the solid/fluid aggregate. The 
stochasticity of V(r) models reservoir heterogeneities on a field scale. For 
a given initial concentration C(r, 0) = Co(r), this equation can be integrated 
using its characteristics, 

dr(t) 
= V(r(t)) (2) 

dt 

which represent the equations of motion of solute fluid elements, or par- 
ticles. Accordingly, the concentration at time v and location r is given by 

C(r, z) = Co(r(O)) 

where r(t), 0 ~< t ~< ~, is the particle trajectory satisfying r (z)= r. 
The primary importance of this equation is to predict the long- 

time/large-scale evolution of C(r, t) based on the input of the reservoir 
properties through the statistical distribution of V(r). For instance, an 
initial datum C0(r) = H(r .  n), where H is a Heaviside step function and n 
is a unit vector, corresponds to a "piston-flow" model in which an initial 
half-space of solute, with a planar interface orthogonal to n, evolves into a 
wrinkled front permeating the medium. The mean position of the front at 
time t > 0 will be associated with the average ( r ( t ) )  of particles originating 
at the interface at time t = 0. The Lagrangian standard deviation 

( l ( r ( t ) -  ( r ( t ) ) ) .  nl~> ~j~ 
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characterizes the width of the spreading front about its mean position, or 
mixing length, a fundamental quantity in solute transport (see, e.g., ref. 1). 

Fick's law of diffusion states that 

and 

< l r ( t ) -  <r(t))12> < D't,  t> 1 

1 
~ -  [-r(t) - ( r ( t ) )  ] ~ Gaussian, 
, / t  

t > l  

where D* is an effective long-time diffusion coefficient. While Fick's law is 
valid in many cases, it has been recognized for some time that the long- 
time behavior of stochastic transport is far from universal. In fact, certain 
statistical features of the velocity V give rise to anomalous, or non-Fickian, 
transport, with 

( I r ( t ) - ( r ( t ) ) [ 2 ) o c t  ~, v # l ,  t > l  

and with a non-Gaussian asymptotic distribution of the fluctuations 
t -v /2[r ( t ) - ( r ( t ) ) ] ,  in which "memory" effects in the Lagrangian history 
are important. Mechanisms linked to anomalous diffusion in the literature 
include, on the one hand, long-range spatial correlations of the velocity as 
a source for superdiffusion (v > 1), (2-4) as well as, in the case of diffusionless 
two-dimensional transport, the "trapping" of advected particles along 
closed streamlines, associated with subdiffusive behavior (v < 1). (2) First- 
principles calculations of D* or of the exponent v require solving the 
equations of motion (2) to some extent and are consequently very difficult. 
Most work in this area has been based on applying one form or another 
of statistical closure to (1) or (2), i.e., in treating the long-time asymptotic 
distribution of advected particles as a "quasiequilibrium" state, described in 
terms of low-order statistics of the velocity field. These procedures, known 
as renormalized perturbation theories, include, most notably, the direct 
interaction approximation (DIA),(5) introduced by R. Kraichnan in the late 
1950s as a general tool for studying turbulent transport. (6) Renormalization 
theories can capture "universal" features of stochastic transport and often 
predict accurate quantitative values for the effective diffusivity, etc. On the 
other hand, since these theories are based on a mean-field approximation, 
namely the hypothesis of quasiequilibrium of the Lagrangian particles with 
respect to the random environment for t > t, the question of how well they 
represent the true dynamics poses itself, especially for systems in which 
velocity fluctuations are important over a wide dynamical range. For 
instance, in the absence of molecular diffusion, the random velocity can 
trap the particle in a closed streamline or, to the contrary, transport it over 
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a long distance over a long or open streamline. All this can lead to 
complicated statistics for the dynamics, the study of which lies beyond the 
scope of renormalized perturbation theories. Exactly solvable models have 
been proposed recently, in the context of stratified random flows, as an 
attempt to understand better the issue of anomalous transport. ~7 9) In a 
similar spirit, the properties of large-scale transport for two- or three- 
dimensional velocities with complex Lagrangian structure should be 
explored through simple models which, if not exactly solvable, are to some 
extent amenable to first-principles calculations and well suited for Monte 
Carlo simulation. 

In this paper we study analytically and numerically a two-dimensional 
model of dispersion in a random incompressible flow which has several 
interesting features in the long-time limit. In our model, the velocity takes 
values on a discrete set, according to the position of the particle relative to 
a random grid in the plane. The Lagrangian equations that we consider 
have the form 

t 
dx(t)  = p~ + Ul(y ( t ) )  

dt (3) 

dy(t) = V2 + U2(x(t)) 
[, dt 

where UI(y)= + 0  and U2(x)= __+U. Here 0 is a positive constant; the 
functions UI(y) and U2(x) are piecewise constant over intervals of random, 
exponentially distributed lengths. The vector V = (V1, V2) represents the 
uniform mean velocity and U ( x , y ) = ( U l ( y ) , U 2 ( x ) )  represents the 
fluctuating velocity which would arise, say, from pressure fluctuations in 
the underlying porous medium. Thus, in this discrete model, the fluctuating 
component of the velocity points in one of four directions, U =  
0( +__ 1, +__ 1), while the mean velocity is allowed to vary continuously. A 
primary focus of the present study is the assessment of the influence of the 
mean-to-fluctuations ratio I VI/U on large-scale transport, and in particular 
on the anomalous effects which arise as the amplitude and direction of P 
are varied, with U(x, y) held fixed. 

The system (3) has a (random) Hamiltonian 

j0 fo H(x,  y)  = ~'~ y - V2x + UI(y ' )  dy' - U2(x') dx' 

- ~'~ y -  ~'2x + W ~ ( y ) -  W2(x)  (4) 

Because of our assumptions, the functions Wi in (4) behave statistically like 
continuous-time Brownian walks at large distances. This model is a special 
case of a larger class of random Hamiltonian flows with 
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N 

O(x, y)= V1 Y -  ~'2 x ~- E bgWj(r'n/) (5)  
j = l  

where Ws(z ), j =  1,..., N, are independent, two-sided ( - ~  < z <  + ~ ) ,  
continuous-time random walks, bj are constant coefficients, and n/are vectors 
in 2D Euclidean space. For  simplicity we shall discuss here only (4), which 
is the simplest example of (5) which exhibits nonlinear coupling of the x 
and y components and is therefore truly two dimensional. A closely related 
model was analyzed in the case Vr = 0, with nonzero molecular diffusion, by 
Redner (1~ and Bouchaud et al., (11) using mean-field methods. 

This paper concerns two related questions. First, we study the statisti- 
cal topography, i.e., the statistical properties of the isolines of the random 
Hamiltonian (4), which are the streamlines of Eq. (3). Particular attention 
is devoted to the question of "trapping" and "percolation" of streamlines, 
according to the values of the mean-to-fluctuations ratio [Vi/[OI. The 
fractal dimension of long streamlines is calculated, as well as the probability 
that a streamline diameter exceeds a given length. Second, we study the 
long-time transport of  particles under a nonzero mean velocity, focusing on 
the dispersion of particles from their mean position. We compute the diffu- 
sion coefficients as a function of the mean-to-fluctuations ratio and show 
that certain resonant velocities give rise to superdiffusive transport in some 
cases and to very large values of the effective diffusivities in others. In the 
former cases, a superdiffusive exponent v = 3/2 is found and the effective 
one-particle Green function (propagator) is characterized as well. These 
questions are analyzed theoretically in the regime I P[ ~> 0 as well as by 
Monte Carlo simulations in all cases. The simulations are done with a 
Connection Machine 200 with 2-8K SIMD processors. Each processor is 
assigned an independent realization of the velocity of size (up to) L ~ 215. 
We compare the analytical results available for the regime fr > O with 
simulations and obtain agreement up to several significant digits, thus 
validating the computer simulations. The numerics are then used to explore 
the regime of strong fluctuations [Vr < 0. The large number of realizations, 
as welt as the large system size, ensure a high accuracy of the numerical 
results. We describe hereafter the results of this study in more detail. 

The first results concern the structure of the streamlines of the 
Lagrangian equation. The present model exhibits two transitions as the 
parameter 

p = m a x  U ' 

is varied. For p = 0  (purely fluctuating velocity) all streamlines are closed 
and finite. For  0 < p < 1 (weak mean-to-fluctuations ratio) the fraction of 
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open streamlines is positive but less than 1, while for p ~> 1 (strong mean- 
to-fluctuations ratio), all streamlines are open, except for the case 
[PI[ = [P  z[ = U, in which the mean flow has a finite probabil i ty (p = 0.25) 
of exactly canceling the fluctuations, producing an array of "pockets" in 
which particles are stagnant. We shall refer to the case 0 < p < 1 as the sub- 
critical regime, the cases p > 1, or p = 1, with IV1[ r IV z[ as the supercritical 
regime, and the case p =  1, [PI[ = [P21 as the diagonal-resonant regime 
(Fig. 1). Despite the simplicity of the velocity field, the r andom streamline 
pat tern for a given realization is quite complex. The percolat ion properties 
of streamlines are studied quantitatively. For  p = 0, we find that  streamlines 
with arbitrarily large diameter can occur, and that  the probabil i ty that  a 
r andomly  chosen streamline exceeds a diameter L >> 1 scales like 

p,r  ~, c~ = 0.21 + 0.017 

The expectation value of the length 2(L) of a streamline exceeding a 
diameter L is shown to scale like 

( 2 ( L ) ) ~ L  ~, ?=1 .28_+0 .015  

Fig. 1. The different dynamical regimes are shown in the (IPll, IV21) plane. The gray box 
corresponds to the subcritical region, where p =max(I Vii/U, I V21/0)< !. The exterioe of the 
box corresponds to the supercritical regime p~> 1. The coordinate axes (I Vii "IV21 =0) 
correspond to velocities giving rise to superdiffusion in the longitudinal direction ("parallel 
resonance"). The corner of the box indicated with a black dot indicates the "diagonal-reso- 
nant" point I V~I = IV21 = U where the effective diffusivities blow up. 
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This scaling law for 2(L) appears to hold even without ensemble averaging, 
so that a randomly chosen streamline with diameter larger than L will 
satisfy 

log 2(L) 
- -  ~ 1.28 ___ 0.015 

log L 

with probability 1. In other words, log 2( L )/log L is a self-averaging 
quantity. This number can be interpreted as the coarse-grained fractal 
dimension of isolines of Ho .(12 15) On the mathematical side, we are able to 
show rigorously that the probability pnc(L) that a streamline exceeds a 
diameter L satisfies the inequality Pnc(L)<<. L ~ for some ~ > 0. Our 
analysis also shows rigorously that, with probability 1, all streamlines in a 
given realization are closed, and that the streamline pattern of the flow 
follows a hierarchical structure, with smaller streamlines contained inside 
larger ones, ad infinitum. In particular, the Hamiltonian 

Ho(x, y)= WI(y ) -  W2(x) 

has no critical isoline that percolates throughout the plane. This result can 
be contrasted with the topological analysis of Isichenko etal. (12) and 
Isichenko and Kalda, (~3,14) which predicted, generically, a critical percolating 
level in each realization of a random "monoscale" Hamiltonian. Monoscale 
Hamiltonians are stationary (i.e., statistically translation-invariant) random 
functions. Their "statistical topography" was shown to be related to the 
scaling properties of percolation clusters near the threshold probability.(13' 14) 
Our results suggest that Hamiltonians with long-range correlations satisfying 
([H(x, y ) [ 2 ) ~  [x[q+[y[q for q > 0 have a completely different statistical 
topography. The fact that the streamlines form a hierarchical structure 
without critical level is of independent interest. It is probably relevant for 
a first-principles treatment of transport with V = 0 in the presence of 
molecular diffusion. 

The second issue is large-scale transport under a nonzero mean 
velocity. We studied the problem analytically, for p > 1, and computa- 
tionally over the entire parameter range. The first point here is the fact that 
a trapping/percolation transition occurs at p = 1. For each p, we denote by 
pnc=p,c(p) the probability that the streamline starting at the origin 
remains unbounded or, equivalently, is not a cycle. Numerical simulations 
show that 0 < p , c <  1 for 0 < p  < 1, and P,c(P)= 1 for p ~> 1. This fact is 
also confirmed by rigorous bounds. The trapping/percolation transition has 
the following implications: In the subcritical regime, the mean position of 
noncycling particles satisfies 

(r(t))~c --- r(O) + (p-~ ~r t ~ l  
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where ( . )no denotes conditional averaging over realizations for which the 
particle is free. Thus, at long times, noncycling particles evolve with a 
larger effective velocity, (1/pnc)V, compensating for the cycling particles 
which make finite displacements. For this reason, conditional averaging over 
noncycling particles is necessary in order to analyze fluctuations in the sub- 
critical case. In fact, if a front or interface evolves in the "piston-flow" 
model described previously, a fraction = 1 -Pnc  of particles is trapped in 
cycling streamlines and the front moves with an effective velocity p ~ V .  
The fluctuations of the moving particles are studied by evaluating 
asymptotically 

1 
tv/2 [r(t) - r(0) - (r(t))nc],  t ~> 1 

the statistics being taken conditionally on noncycling. We find that = 1 or 
v = 3/2, according to the direction of the mean velocity. Centering the 
particle position with respect to the nominal mean velocity, ( r ( t ) ) = V t ,  
leads, otherwise, to "ballistic" spreading (v = 2), due to particles being left 
behind the front. Of course, in the supercritical case, all particles are free, 
and averaging is taken with respect to the entire ensemble (Fig. 2). 
The diagonal-resonant case, ]Vll = IV2] = 0, is special because a finite 
probability exists for particles not to move at all. Studies of particle motion 
for VJU, Vz/U in a vicinity of this regime reveal a blowup of the effective 
diffusion coefficient due to a large disparity of particle motions, according 
to their starting positions. This is a clear example of a phenomenon which 
cannot be revealed by a mean-field approximation. 

As mentioned, the exponent v depends on the direction of the mean 
velocity relative to the random grid defining the fluctuations. If V points in 
the directions ( _+ 1, 0), (0, _+ 1) (the parallel-resonant case), the motion 
in the direction transverse to the velocity is Fickian, but the longitudinal 
fluctuations are superdiffusive, with v = 3/2. This result applies both in the 
subcritical and the supercritical regimes. Accordingly, if ~r = (V1, 0), then 
y(t)/x/~ is asymptotically Gaussian with an effective transverse diffusivity 
D*. In the supercritical case, the transverse diffusivity can be computed 
exactly and is given by 

a U  2 
O * -  

2 IV1] 

where a is a microscopic length scale (see Section 2). The (longitudinal) 
fluctuations in the x coordinate, 

1 
t3/4 I x ( t ) -  (x ( t ) ) , c  ] 
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o r  

1 
?/--~ [x(t)-  9~ t] 

(according to whether we consider the subcritical or the supercritical case) 
converge in distribution to a non-Gaussian random variable. In the super- 
critical case, we show rigorously that 

([x(t)--~'lt]2> aO z 4 (2 )  1/'2 
t 3/2 ( 2 D * )  1/2 3 

= a l / 2 V  ]Vi i  1/2 X 1.06 

Fig. 2. Schematic representation of the "piston-flow" model. (a) Initial configuration; the 
gray zone corresponds to the region occupied by the solute. (b) In the supercritical regime all 
streamlines percolate; the front propagates with a velocity V and develops a mixing zone of 
width /max <s tv/z (v = 1 or 3/2). (c) In the suberitical regime, a fraction 1 - P , c  of particles is 
trapped in cycling orbits and is progressively left behind the front, while a fraction P~c of free 
particles moves with an average velocity pnc~V, for t>> 1. The striated region of length oct, 
occupied by free particles, has an upwind front with mixing length oc t ~/2, v = 1 or 3/2. 
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The corresponding asymptotic probability density P(x) can be charac- 
terized as well. Its Fourier transform is given by 

/~(k) = E {exp(-(aU2k2)/[2(2D*) 1/2] fo fo 6(~(s)-fl(s'))ds ds'} (6) 

where 6(.) is the Dirac delta and E{.} denotes path integration with 
respect to a standard Brownian motion /3(t), 0 ~< t ~< 1. The effective 
transverse diffusivity D* appears in the exponential in (6), reflecting the 
influence of the transverse diffusion on the superdiffusive longitudinal 
fluctuations. This probability density was obtained previously by 
Avellaneda and Majda (8'9'16) in the study of a class of models of "nearly 
stratified" flows with molecular diffusion. It is closely related to the 
asymptotic probability density for a Brownian walker in a stratified 
velocity studied by Matheron and de Marsily (7) and later by Zumofen 
etaL (17) The numerical simulations, involving the calculation of various 
moments, flatness factors, and empirical distributions, strongly suggest that 
this characterization is qualitatively valid in the subcritieal case as well, 
even for relatively small values of p = I FII/U, for which the motion in the 
x and y directions is strongly coupled. A simple heuristic explanation for 
this superdiffusion for vr = (if1, 0) can be given. In fact, the y component, 

y(t) = y(O) + U2(x(s)) ds 

experiences random, weakly correlated velocities U2(x(s)) and the Central 

Limit Theorem applies to the rescaled paths (1/x/t-) y(st), 0 <s < 1, t> 1. 
On the other hand, the longitudinal fluctuations satisfy 

t- ~ [x(t) - <x(t)>,c] = t 3/4 UI(y(s)) ds 

1[ (1  )] 
= t l / 4  fO U l tl/2 ~ y(st) ds 

It can be shown that the stochastic process tl/4Ul(tl/2y) approaches, as 
t ~ o e ,  a 6-correlated Gaussian white noise and that (1/x/-t) y(st) 
approaches a Brownian motion (2D*) x/2 fl(s). Moreover, the thermaliza- 
tion time for the transverse motion is much shorter than the corresponding 
time for the longitudinal motion, which depends on the multiple visits of 
the walker to the same horizontal layer (see refs. 16 and 17, for example). 
Therefore, the processes (1/, , /7)y(ts),  tl/4Ul(ta/2y ) "decouple" statistically 
as t >  1, and the present model can be mapped into the Matheron- 
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de Marsily model of a Brownian walker evolving in a random stratified 
velocity. 

If the velocity V is not perfectly aligned with the coordinate directions, 
i.e., V1 I72 r 0, the motion is Fickian for both the x and y directions, in the 
subcritical and supercritical regimes. Remarkably, if either I ff~] or I V2l 
exceeds the amplitude of the fluctuations ] U[, i.e., p > 1, the corresponding 
diffusivities can be computed analytically. We find that 

aU2 (1 + 1911 02 ) 

D ' 1 - 2  I g~l I Va I -192 -  021 + 19=1"1 ~ 2 -  U2I (7a) 

and 

aU2 ( IV21 0 2  ) 
D*2 - 2 1911 1 3i- --2 1911 . [~2 __ 021 + 1~21 . IV 1 _ U21 (7b)  

Notice that D~I and D*2 diverge as fit and if2 approach the diagonal- 
resonant values [ flit = ] 92[ = U, reflecting the enhancement of the dispersion 
caused by the trapping of a fraction of the particles in "pockets" in which 
the mean velocity cancels the fluctuations almost completely. The Monte 
Carlo simulations allow us to investigate particle dispersion in all regimes 
and, in particular, in the subcritical regime for which analytical formulas 
for the diffusivities are not available near resonance or near p = 0. The 
calculations confirm Fick's law for V~ V2 ~ 0 and provide numerical values 
for the diffusivities. We focused, in particular, on the values of the dimen- 
sionless ratios 

r~i=D~*/(aO2/29fl, i r  i , j = 0 o r  1 

Here, aU2/29j represents the diffusivity from the standard Kubo 
weak-coupling approximation, (18'~9) which is exact in the limit p > 1. The 
numerical simulations show that r o. increases as p ~ 0, in the subcritical 
regime, and blows up near the diagonal resonance 191 = 1921 ~ U. 

In the final portion of the paper we compare the values of r,i with the 
predictions of the direct interaction approximation, which is a mean-field 
approximation for Di* based on the input of the two-point correlation 
function of the velocity, and the mean velocities ffl and 92. It is shown 
that this approximation does not account for the observed increase in r,i 
for p ~ 1 or near the resonances. The exact values of the diffusivities are 
compared with the DIA for a variety of values of ff~ and if2 as well. Good 
agreement between DIA and the exact formulas is found only for certain 
nonresonant values of rr such that V1 ~ 92, or for p ,> 1. 

822/72/5-6-25 
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The contents of the paper are as follows: in Section 2 we give a 
detailed description of the statistical model. In Section 3 we discuss the 
statistical topography of streamlines, and the estimates for the distribution 
of the streamline diameters and of their fractal dimension. In Section 4 we 
study the supercritical regime, deriving exact results for the long-time 
particle dynamics analytically. Section 5 discusses the Monte Carlo simula- 
tions, which are carried out in both the critical and subcritical regimes, 
including the parallel-resonant and diagonal-resonant cases. In Section 6 
the numerical aspects of the simulation, and, in particular, its efficiency on 
the CM parallel machine are discussed. The general conclusions are drawn 
in Section 7, after detailed comparisons with the Isichenko-Kalda theory 
and the DIA are made. 

2. D E S C R I P T I O N  OF T H E  M O D E L  

The velocity field U = (U1, U2) is constructed by means of an auxiliary 
random grid. Specifically, consider two independent Poisson processes with 
unit intensity, 

�9 . . J ( _ ~ , X  k + l  ..... Xo ,  X 1 , . . . , X ~  .... 

and 

"'" Y-l,  Y-l+1, YI+2,"', Yo, Y1 ..... Yt .... 

The indices in both sequences vary from - Go to + oe over the integers, i.e., 
the sequences are doubly infinite. According to basic properties of the 
Poisson statistics, the differences Xk - X~_ 1, Y t -  Yt 1, k, l = 0, + 1, + 2,..., 
are independent random variables with exponential distributions, so that 

Prob{Xk--X~ l > c ~ } = P r o b { Y t - Y  t l > c ~ } = e  ~, c~>0 

We consider the random grid i n  the x - y  plane formed by the parallel 
vertical lines 

x = a X k ,  k integer 

and the parallel horizontal lines 

y = a YI, l integer 

where a is a constant with dimensions of length. The spacings between 
consecutive parallel lines are exponentially distributed with mean a. This 
grid subdivides the plane into rectangular cells 

a X k  < x < a X k +  1 (8) 

a Y l <  y < a Y t + l  
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The fluctuating stochastic velocity field U(x,  y)  is defined to be constant  in 
each cell. In  the cell (8) corresponding to the integers (k, l) we define 

U1 = ( - 1 ) Z g ,  U 2 =  ( - 1 )  k U (9) 

where U is a positive constant  with dimensions of velocity. Consequently,  
we have U = (+_ U, _+ U), with signs varying according to the cell location. 
F r o m  this definition, the horizontal  componen t  U1 depends only on the 
"row" on which it is defined, th rough  the integer l, and the vertical 
componen t  depends only on its "column,"  so that  

V 1 = Vl(y) ,  0 2 --- V2(x ) (10) 

In particular, U(x,  y)  = (UI(y) ,  U2(x)) = (Ul(y), O) + (0, Ua(x)) is a super- 
posit ion of two stratified r andom velocities perpendicular to one another.  
Because of this, the normal  components  of  U are cont inuous across cell 
boundaries  (Fig. 3). The mot ion  of a particle under U, 

d x (  t ) 
-- Ul(y(t))  

dt 

@(t) 
= 

dt 

(11) 

\ / "-,. / ",. / \ / 

/ \i / \ / % / \ 

\ / "., z \ z 
i 

/ % i /  % / \ / ", 
i 

. . . . . . . . . . . . . . . . . . .  r 

\ ,  ............ i ............................................................................................................ 

/ " - ,  / "., / '% / \ 

i . . . . . . .  T .................. ................... i 
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Fig. 3. A realization of the random velocity field U(x, y) (schematic). The velocities point in 
four possible directions (_+ 1, + 1); note that the normal components across cell boundaries 
are continuous. 
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is defined as follows: a particle located initially inside a cell is advected with 
the uniform velocity (-t-U, -t-U) until it hits a cell boundary. At the cell 
boundary the path is "bent" by an angle of 90 ~ according to the sign 
change in the tangential component. The motion for particles originating at 
a cell boundary is well defined (the particle moves into a cell according to 
the value of the normal velocity), except if the particle originates at a cell 
corner, where the velocity is not clearly defined. We remove this ambiguity 
by defining the velocity to be zero at cell corners, so that, if a particle 
reaches a corner it remains there and if it originates at a corner it 
does not move. Notice that the cell corners, which have coordinates 
(aXk, aYt),k, l = 0 ,  _+1, _+2,..., are countable and hence the probability 
that a given point in the plane coincides with any such stagnation point is 
zero. Examination of the flow near these stagnation points shows that they 
are either "O-points" or "X-points" in the terminology of Soward and 
Childress, (2~ the former being circulation points and the latter unstable 
fixed points with two incoming and two outgoing trajectories. The X-points 
and the O-points are alternating in each horizontal and vertical line; if k 
and l have the same parity, (aXk, aYt) is an X-point, and if k and l have 
different parity, (aXk, aYl) is an O-point. Clearly, the set of trajectories 
passing through either an O or an X point is countable, and hence statisti- 
cally negligible. The flow (11) admits a Hamiltonian, i.e., can be written in 
the form dx/dt = OHo/Oy, dy/dt = -~Ho/~X, with 

H~ Y)= fo Ul(y') dY ' -  fo U2(x') dx' 

- W I ( y ) -  W2(x) (12) 

Notice that the functions I41,. are piecewise linear, having slopes + U, which 
are constant over intervals that are exponentially distributed with mean a. 
Thus, W~(y) and W2(x) are standard, continuous-time random walks. 

The statistical properties of Poisson processes imply that U~(y) and 
Uz(x) are two-state Markov processes, and that the random field 
U(x, y ) =  (UI(y), Uz(x)) is statistically translation invariant and ergodic. 
One can easily compute the first and second moments of Ui, which are 
given by 

(U~(y)) = (U2(x))  = 0 

(Ul (y )  U~(y') ) =  U2e -21y- y'I/a (13) 

(U2(x) U2(x') ) = U2e - 21x- x'l/a 

Despite the short-range correlations of U~ and U2, points which have 
approximately the same x or y coordinate have strongly correlated 
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velocities even if they are far apart, because of the special structure (10). 
Notice also that this random field has cubic symmetry: the Hamiltonian is 
statistically invariant under reflections about axes parallel to (1, 0), (0, 1), 
(1, 1), and ( 1 , - 1 ) .  Higher degrees of symmetry can be achieved by 
considering Hamiltonians such as (5). 

To better understand the "universality class" to which this model 
belongs, we note that, from (12), (13), 

(IHo(x, y)] 2) ~ aU 2 tYt, ]Yl ~ 1 

aU 2 Ix], Ixl >> 1 

Therefore, if we consider a coarse-grained limit of H0(x, y) as a ~ 0 ,  
U---, + ~  with aU 2 = 1, we obtain, by a simple application of the Central 
Limit Theorem, 

Ho(x, Y) ~ BI(y) - B2(x ) 

where Bl(y), B2(x) are independent, standard Brownian motions. Hence, 
the corresponding "coarse-grained" velocity is formally 

[Nl(y), N2(x)] (14) 

where N i = B ;  are independent, Gaussian white-noise processes. [Note, 
however, that in this limit, the equations of motion (11) are not well 
defined, because Ni, i =  1, 2, are not differentiable.] We believe that the 
results presented in Section 3 for the velocity U also apply to the more 
general class of flows which are "smoothed-out" versions of the white-noise 
velocity (14). 

In the case of motion under a nonzero mean velocity, we take 

V(x, y) = ( 91 -~- Ul(y), 9 2 + U2(x)) 

where V1 and 92 are constants with dimensions of velocity. The random 
field V is again constant in each rectangular cell of the grid, and takes the 
values (VI___U, V2+U) according to (9). The addition of a constant 
velocity preserves continuity of the normal components across cell boun- 
daries, and thus the flow is well defined except at the cell corners, where it 
is defined to be zero. Clearly, the corresponding flow, described by (3), is 
Hamiltonian, with 

n(x ,  y ) =  9 1 y -  V2x + no(x, y) 

A fundamental difference between the cases 9 =  0 and P #  0 is that in the 
former case the streamlines of V(x, y) are closed and bounded with 
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probability 1, while for V ~ 0 a fraction of streamlines is unbounded. The 
fraction of unbounded streamlines depends on p, the mean-to-fluctuations 
ratio (Section 3). 

The diagonal-resonant case I Vll-~lV21---0 is special. Near these 
parameter values some cells can have almost zero velocity, since 
V = ( V1 -+ U, V2 +_ U). This corresponds to the physical situation in which 
the amplitudes of the mean flow and the fluctuations are nearly equal 
and both fields cancel each other out in certain regions of the medium, 
producing "pockets" of stagnation. For values of 91, V2 near this 
resonance, a randomly chosen realization will result in very small particle 
displacement for 25% of the initial positions (one cell out of four) and 
much larger displacements in the remaining 75%. 

3. STATISTICAL TOPOGRAPHY OF THE HAMILTONIANS Ho 
AND H 

3.1. 17=0 

We examine more closely the structure of the streamlines solving the 
flow equations (3), focusing first on the "zero-mean-velocity" case, ~r 
and subsequently on the case V r  We shall see that the presence of a 
nonzero mean velocity alters substantially the topology of the flow and 
consequently its long-time behavior. It is useful to define the notion of per- 
colation of streamlines for a random flow. A streamline, or solution of (3) 
for - o e  < t < + ~ ,  is said to percolate if it is spatially unbounded so that 
a particle originating at time t = 0 on it will be eventually at arbitrarily 
large distances from its initial position. In particular, such streamlines have 
the property that, given a "box" of side L centered at the starting point, the 
streamline exits the box after some time t, and this happens for all box 
sizes L. This motivates our use of the term percolation. If a streamline does 
not percolate, then either (i) it terminates at an unstable fixed point located 
at a cell corner or (ii) it forms a closed trajectory along which it undergoes 
periodic motion. The first case is negligible from a statistical viewpoint 
because the set of streamlines terminating at an unstable fixed point is 
countable. The overall "statistical topography" of the flow with ? - - 0  is 
characterized precisely in the following results. 

Theorem 1. If V=O, then, with probability one over the set of 
velocity realizations, (a) there exist no'percolating streamlines, and (b) all 
streamlines terminating at an unstable fixed point (X-point) originate also 
from the same fixed point, forming a closed "loop." 

ProoL The proof of (a) hinges on the following proposition: 
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Proposition 2. 

Then 

Let EL denote the event 

EL = {for all points (x, y) lying on the 
boundary of the square of side 2L 
centered at (0, 0), we have Ho(x, y) < - 2  f OI } 

Prob EN = 1 
1 

In words, the assertion is that there exists a set of unit probability in 
the Space of velocity configurations, such that the Hamiltonian 
Ho(x, y ) =  W I ( y ) -  W2(x) will be uniformly negative, less than - 2 ,  on the 
boundary of some square box centered at (0, 0). The box may depend on 
the particular configuration. The proof of this proposition is sketched in 
Appendix A; for a general proof which applies to an arbitrary Hamiltonian 
of the form (5) see Apelian. (21) Assuming that Proposition2 is true, 
consider a disk of radius 1 centered about (0, 0). Then, since IOH/Oxl = 
IOH/@I = 101, we have 

IH(x, Y)I ~(]xl  + [ y l ) 1 0 1 ~ [ 0 1  ~ < 2  101 

for (x, y) inside the disk. According to Proposition 2, the Hamiltonian 
satisfies H(2, 37)< - 2  ]UI for all points (2, 37) on the boundary of some 
square box centered about (0, 0) of side >~2, containing the unit disk about 
(0, 0). Therefore, no isoline of H passing through the disk can cross the 
boundary of the square--otherwise ]H(2, 37)1 < 2  I U] on the boundary of 
the square at some point. We conclude that all streamlines originating from 
the unit disk around (0, O) are bounded, with probability one. 

To conclude that there exist no unbounded streamlines for velocities in 
a set of configurations of measure 1, we argue as follows: let D1, D2, D3 .... 
denote a countable collection of disks of unit radius covering the 
x - y  plane. Then, if an infinite streamline exists, it must pass through 
infinitely many and hence at least one D j, j = 0, 1, 2 ..... Therefore 

Prob {infinite streamline } = Prob {infinite streamline and it 

passes through D for some j} 

~< ~, Prob {infinite streamline 
j = l  

that passes through D j} (15) 
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Because the statistics are translation invariant, we have 

Prob {infinite streamline that passes through Dj } 
= Prob{infinite streamline that passes through 

the unit disk centered at (0, 0)} 
= 0  

Hence, all the summands in (15) vanish and the probability that a 
configurations has an infinite streamline is zero. 

To prove (b), we show that a streamline connecting two different 
unstable fixed points occurs with zero probability. For this, let us calculate 
the probability that, for given k, l, m, n, the points (aXk, aYt), (aXm, aYn) 
are connected by a streamline. If they are connected, then they must lie at 
the same level, i.e., Ho(aX~, aXt) = Ho(aXm, aYn). However, 

Ho( aX k, a Y,) - Ho( aXm, a Yn) = [ Wl ( a Y,)  - WI ( a Y,) ] 

-- [ W z ( a X m ) -  Wz(aXk)]  (16) 

The terms in brackets are sums of independent, exponentially distributed 
random variables. For instance, we have 

~ aYn 
W l ( a Y n ) -  WI(aYI)= OaYi UI(y)  dy 

= ~ (-1)JOa(L-L-~) 
j = l + l  

and similarly for the second summand. Hence (16) reduces to 

( - - 1 ) J ( Y j - - Y j - I )  = ~ ( - -1 )~ (X , - -X , -1 )  
j = l + l  i=k+l  

Since the differences are independent and exponentially distributed, the 
probability that this equation is satisfied is ze. This shows that the 
probability that two given different X-points are connected by a streamline 
is 0. Finally, since the set of all unstable points is countable, the probability 
that any pair of unstable points is linked by a streamline is also 0, 
concluding the proof of Theorem 1. �9 

From Theorem 1, we conclude that the structure of the streamlines of 
the flow with V = 0 is as follows: all streamlines are closed and correspond 
to cycling motion of particles, with the exception of homoclinic closed 
loops which begin and end at the same unstable fixed point. Each unstable 
fixed point is associated with two loops, and, topologically, two types of 
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configurations are possible at each of the fixed points. The first case 
corresponds to a pair of loops which have nonoverlapping interiors (a 
"figure 8" configuration) and the second to a pair of loops such that the 
interior of one is contained in the other ("self-enclosing" streamline); these 
two loops are represented in Figs. 4a and 4b. (See also Isichenko. (is)) The 
global picture that arises is that of a flow with a hierarchy of larger and 
larger closed loops passing through unstable X-points and containing 
closed streamlines (see Fig. 4c). 

Theorem 1 can be contrasted with the topological analysis of 
Isichenko e taL (~2) and Isichenko and Kalda, (13'14) in which a critical 
infinite streamline was postulated to exist in every realization of a generic 
random Hamiltonian. The reason for the discrepancy is that those authors 
studied "monoscale" random functions which are stationary processes and, 
in particular, have bounded rms amplitudes as (x, y ) ~  +oo. We believe 

(a) (b) 

/ 

(c) 
Fig. 4. (a) A "figure 8" configuration: two homoclinic loops with the same orientation linked 
at an X-point; (b) "self-enclosed" streamline: two loops with opposite orientation linked at an 
X-point; (c) schematic rendering of the streamline hierarchical structure. 
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that the present hierarchical topology of closed streamlines without critical 
level is characteristic of random Hamiltonians with unbounded growth. We 
shall return to this point later (Section 7.1). 

The distribution of sizes of streamlines and their lengths can be 
analyzed by Monte Carlo simulations, using large "boxes" in which 
configurations are simulated and subsequently measuring the probability 
that a streamline exists the box, the length of such streamlines, etc. For  this 
we define 

p,,c(L) = Prob{lr(t)[ > L for some t, given that r ( 0 ) =  0} 

Our simulations consisted in generating 8192 independent configurations of 
sizes up to L = a2 is and measuring the probability of exit. We found that 
Pnc satisfies the power law 

p,c(L)  ~: L ~, L >> 1, ~ = 0.21 _+ 0.017 (17) 

(See Fig. 5.) We can also prove a rigorous result which gives a qualitative 
upper bound for pnc(L), which we state as follows. 

Proposition 3. There exists a positive number ~ such that 

p.~(L) <<. L -~ 

For  a sketch of the proof  see Appendix A. A more complete analysis 
is given in Apelian. (21) 

A characteristic property of very long streamlines of random 
Hamiltonians, first observed and studied by Isichenko and co-workers, (12-14) 

- 0 . 5  - 

- 1 . 0 -  

- 1 . 5  

o_ 

- 2 . 0  

- 2 . 5  

I I ~ I I I 

4 6 8 10  12  14  

I og2 (L )  

Fig. 5. Log-log plot showing the dependence of the escape probability p,,c(L) on the box size 
L. This simulation uses 8192 random realizations of V, tracking the position of a particle 
originating at (0, 0) for each realization. 
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is fractal behavior on a coarse-grained scale. This means that streamlines 
with diameter > L  should have a length 2(L) (measured in units of the 
ultraviolet length a) which scales superlinearly, i.e., 2(L)/a~ (L/a) 7, 7 > 1. 
The exponent 7 represents the fractal dimension of the streamlines. (12 15) To 
calculate 7 for our model ,  we measured the length of the streamlines exiting 
a hierarchy of boxes of size L - 2 k, k ~< 15, and averaged over the number 
of exiting particles. The computat ional  result is 

(2(L))~ L>>I,  7=1.28__0.015 

In Fig. 6 we give a log-log plot of (2(L))/a versus L/a. Error bars on 
the exponents e and 7 can be determined in the following way. Since we 
simulated 8192 independent environments, the error on p,c(L) for each L 
is of order (4 x 8192) -1/2 =0.006, the factor of 4 arising from the fact that 
the variance of Bernoulli trials with unknown probability is ~< 1/4. We then 
did a straight-line fit of the points (logL, log(p,c(L))), where 
l o g ( p , c ( L ) )  is the logarithm of the frequency of exiting particles. A slope 
of c~-0.21 was observed, with rms distance for the last 12 points 
cr~ = 0.017. The agreement with the linear fit is remarkable. We conclude 
that the error on ~ is +0.017. 

We turn next to the analysis of the estimate of the fractal dimension 
of the long streamlines, i.e., the exponent 7. Actually, it is possible to obtain 
7 in two independent ways. First, we can use the exact sum rule 

~ + 7 = 2 - h =  1.5 

where h = 1/2 is the H61der exponent of H0 .(13) This gives the estimate 
7 = 1.5 - 0.21 + 0.017 = 1.29 _ 0.017. Alternatively, as mentioned above, we 

16-- 

1 4 -  

i 1 0 -  

13- 

6 -  

4 -  

I I I 4 6 8 110 112 114 
Iog2(L) 

Fig. 6. Log-log plot showing the behavior of (2(L)), the mean length of the streamlines 
percolating outside a box of size L. 
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can compute ), by a linear regression on the data (log L, log(,~(L))), where 
the average is taken over trajectories which exit the box of size L. This 
regression gives the estimate ~-~ 1.28 with rms distance for the last 12 
points a t =0.015. Using the two independently computed exponents, we 
obtain ~ + 7 = 1.49 + 0.03, which is in excellent agreement with the sum 
rule. Thus, we can safely conclude that the error bar for 7 is ~<0.02. 

It is interesting to note that the scatter from the least-squares linear fit 
is quite negligible, despite the fact that fewer and fewer particles exit the 
longer boxes and contribute to the average (2(L)) .  A plausible explana- 
tion for this phenomenon is that the fractal exponent 7 is a self-averaging 
quantity which should not vary from one realization to another. This 
explanation can be made into a rigorous mathematical theorem by 
an appropriate definition of 2(L) and the study of the properties of 
thermodynamic limit (21) 

log 2(L) 
lira 

L . ~  logL 

3.2. V=~O 

The presence of a mean velocity changes the streamline picture sub- 
stantially, giving rise to the elongation of closed streamlines in the direction 
of P and the "opening" of a fraction of streamlines. The relevant parameter 
to measure the relative effects of mean velocity/fluctuations is 

max(I Vii, IV21) p =  

In the supercritical case (p ~> 1) all streamlines are open. In fact, if, for 
instance, V~ > IUI, then 

dx,t,=~ ~ VI + Ul(y(t)) 
dt 

>>.0 (t8) 

and hence particles always move in the upwind direction. Let P,c = P,c(P) 
denote the probability of not cycling, or percolating, starting from 
r (0)=  (0, 0). (This notation emphasizes the dependence of p,~ on p, the 
"box size" now being infinite.) In the subcritical regime ( 0 < p  < 1), P,c(P) 
satisfies 0 < p h i ( p ) <  1. This is demonstrated rigorously in Proposition4 
below. Equating ensemble averages with spatial averages over a given 
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realization, by means of the ergodic theorem, we conclude that, with 
probability 1, in the subcritical regime a given realization will contain a 
fraction 1 -  P,c(P) of closed streamlines and a fraction Pno(P) of open 
streamlines. 

Proposition 4. Assume that 0 < p < 1. Then 

P ~<p,~(p)< 1 (19) 
l + p  

Proof of Proposition 4. To establish the lower estimate in (19), 
assume without loss of generality that P~ > 0, IV21 <lVll <lUI and intro- 
duce the set E~ of realizations such that the trajectory originating at 
r(0) = (0, 0) satisfies 

Then 

Ir(t)l ~< 5, for all t 

~ t = ( x ( t )  ) 

= (x(t) lE~) P(E~)+ (x(t) lE; )  P(E;) (20) 

where ( - I  A )  denotes conditional expectation with respect to A, and E;  is 
the complement of E6. The x coordinate satisfies the absolute bound 

x(t) ~ (Px + IUI) t 

Substituting in (20), we obtain 

Vlt~< (x( t )  I E~) P(E~)+ (P'I + [UJ) tP(E~) 

Dividing both sides of this inequality by (V1 + ]UI) t, we obtain 

V1 _ 4 (x( t l  l Ea)=P(E~) + P(E;) 

VI+IUI  ( P l + I U I ) t  

The conditional average (x(t) I E~) is bounded from above by 6, from the 
definition of the set E~. Therefore, letting t ---, oo, we obtain 

_ <~ P ( E ; )  (21) 
91 + I UI 

for any value of 6. Notice that N~= 1E~ = {set of environments for which 
(r(t), t ~> 0) percolates }. Hence, letting 6 ~ ~ in (21), we conclude that 

VI P 
p,,. >1 _ 

V~ + IU[ l + p  

which is the lower bound in (19). 
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The upper estimate in (19) is obtained as follows. If p < 1, then the 
horizontal velocity components are V1 + U and V1 - 0 and these two num- 
bers have opposite signs. Analogously, the vertical components V2 + U and 
V2-  0 have different signs. In particular, a particle can travel "downwind" 
as well as "upwind" and form a closed path. The simplest possible closed 
configuration that can arise is a polygonal curve with four sides winding 
about an O-point. Let (aXk, aYt) be the O-point which is nearest to 
(0, 0) =r(0). It is easy to see that the streamline passing through (0, 0) will 
wind around (aXk, a Yt) and form a four-sided polygon provided that the 
four X-points which are nearest to the O-point are sufficiently far from it. 
The probability of configurations of nearest neighbors (in terms of the 
Poisson processes {Xk}, {Y l})leading to a closed, four-sided loop can be 
estimated, using the fact that the nearest-neighbor distances to the grid are 
exponentally distributed and independent. A tedious but straightforward 
computation shows that the probability P~oov that the origin lies in a simple 
four-sided loop is positive for p < 1. Therefore, Pnc < 1 - Ploov < 1. [] 

We have Computed a few values ofpnc(p) for V =  (91,0),  which are 
shown in Table I. 

Finally, we calculate the effective mean velocity of noncyclying par- 
ticles in the subcritical regime. Introduce the set E of realizations such that 
the streamline originating at r(0) = (0, 0) percolates. Then, 

ret= (r(t)~ 

= (r( t)  t E )  p . c+  (r( t)  I EC)(1 - P . c )  (22) 

Clearly, on the configurations of E c, r(t) is a cycling path which satisfies 

Table I. Probabil i ty That  t he  S t r e a m l i n e  
Passing through (0, 0) Is Open, for 

Di f ferent  Values of p = 171/O a 

p(= vl/u) p,c(p) 

0.125 0.391113 
0.250 0.526367 
0.375 0.620605 
0.500 0.707031 
0.625 0.765137 
0.750 0.835449 
0.875 0.900391 

The mean velocity satisfies V2 = 0. 
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l imt_ ~ (l / t)Ir(t)l  = 0. Since the ratio ( l / t ) ] r ( t ) l  is uniformly bounded, by 
the Dominated Convergence Theorem, 

lim -1 ( r ( t ) ]  Ec)  = 0  
t~cx3 t 

Therefore, dividing (22) by t, and letting t ~ ~ ,  we obtain 

lim 1 (r(t))~c-- lim 1 (r( t)  I E )  
t~oo t t~oo t 

1 

Pnc 

This means that if 0 < p < 1, the fraction of  "free" particles moves, for t >> 1, 
with an effective velocity (1/p,c) V. This velocity is larger than the nominal 
velocity fr and compensates for the fraction of trapped particles so as to 
have Vt = ( r ( t ) ) ,  which is a consequence of the incompressibility of V. 

4. R I G O R O U S  A N A L Y S I S  OF THE S U P E R C R I T I C A L  CASE 

4.1. Mean  Square Displacements 

Remarkably, if p >~ 1, the model is completely solvable and we can 
calculate explicitly the mean-square displacement, ( I t ( t ) -  Vtl 2) as t ~ oo. 
This can be done for all velocities such that max(IV1/UI, IV21/U)>>.I, 
including velocities in a vicinity of the diagonal-resonant case [P~I 
U, [ V21 ~ O and in the parallel-resonant case (V1 V12 = 0), for which the 
longitudinal fluctuations are superdiffusive. The exact solvability of the 
model for p/> 1 is due to the fact that, in this regime, one or both coor- 
dinates are monotone functions of  time [cf. Eq. (18)]. Expressing time as a 
function of the increasing coordinate and substituting in the other one, we 
obtain a Markov process which can be analyzed precisely. In the new coor- 
dinates, mean-square displacements can be computed through somewhat 
involved manipulations. 

We summarize the results of the calculations for the mean-square 
displacements in the following result. 

Theorem 5. (i) If Vt.  V2~O and p > l, then 

1 
D*I--= tlim~ ~ ~ ( [x ( t )  -- Vlt] 2 ) 

a U 2 ( 1  + IVll 02 ) 
- - -  ( 2 3 )  

2 ]V21 ]V21'  1~2 _ ~21 jr. IV1[" 1~2 _ ~21 
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and, similarly, 

1 
D*2 = lina ~ ( [ y ( t ) -  V2t]2> 

aU2 (1 + I'V2I 02 ) 
- ( 2 4 )  

2lVll 1921 �9 1912- g2l + Iffll �9 19~-  021 

(ii) If V1 �9 I/"2 = 0 and p > 1, the transverse motion is diffusive and the 
longitudinal motion is superdiffusive. Accordingly, if [ 911 > [ U[ and V2 = 0, 
then 

and 

1 - aU2 (24') 
D*2=D*=lirn. ~ < [ y ( t ) ]  2) 21911 

l ira 
t --, oe t 3/2 

< [x( t ) -  Plt]=> 
(2D*)1/2 

= al/2U I Vii 1/2 (25) 

ProoL Assume, without loss of generality, that VI> 0 and that 
V2~>0. For simplicity in the computations, it is convenient to use the 
dimensionless space, time, and velocity scales defined by 

X I = x / a  

y '= y/a 

t' = tU/a 

V ' =  (1/U) V 

(26) 

In the new variables the "microscopic" length scale (grid separation) 
and time scale are unity and the velocity fluctuations are +_ 1. The only 
remaining parameters are V1/U and V2/U, the dimensionless mean 
velocities. We shall compute the mean-square displacements in dimensionless 
variables and obtain the dimensional results by restoring units. Accordingly, 
we shall assume that a =  1 and U =  1 in the basic equations (3); this 
is equivalent to the proposed nondimensionalization. Note that the 
supercritical regime corresponds now to max(1911, 1921)~> 1, and our 
assumption becomes ff~ > 1, V2 ~> 0. 

First we describe the "Markovianization" arising from ff~ > 1. Because 



Trapping, Percolation, Diffusion in 2D Random Field 1253 

of this assumption, x(t)  is an increasing function of t. Therefore, we can 
parametrize the coordinate y and the time t as functions of x: 

y = y ( x )  

t = ~ ( x )  

where y(x )  and r(x) are stochastic functions of the variable x. Let us 
characterize more precisely the statistical distribution of y(x)  and r(x). For 
this, we assume momentarily that there are no vertical barriers or, more 
precisely, that we are only considering particle motions between successive 
collisions with vertical barriers. Then, if the (constant) vertical velocity is 
Vz + 1, we have 

dy = dy . dt  

dx dt dx 

~2+1  

V l + l  

and the sign of the denominator depends on which horizontal layer the 
point (x, y) is located. As x increases, the particle travels in the positive x 
and y directions (we suppressed the vertical barriers). Therefore, since { YI} 
is a Markov process, dy/dx is a two-state Markov process with states 

~2+1  ~'2+1 
- -  - - ,  W - -  - -  

W +  V1 + 1 - VI - -  1 

The jump rates associated to each state are obtained by observing that 
if dy/dx = ( V2 + 1 )/( V1 + 1 ) for a "duration" 3x, then 

P2+1 
332 =-  fix (27) 

7 1 + 1  

where 6y is the separation between successive horizontal barriers. This 
separation is exponentially distributed with mean 1; and we deduce that 
the corresponding rate is 

V 2 + l  
F + - - - -  

V I + I  

Similarly, the rate corresponding to w_ is 

V 2 + l  

822/72/5-6-26 
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This determines completely the Markov process dy/dx inside a vertical layer 
with vertical velocity V2 + 1. What happens after collision with a vertical 
barrier? Clearly, since the vertical velocity changes to V 2 - 1 ,  the above 
description should be changed. Note, however, that, the derivative process 
dy/dx in the new vertical layer is again Markovian, with states 

V2 - 1 V2 -- 1 
w+ = and w_ = 

V1 + 1 V1 - 1 

and respective rates 

[ V z -  11 I v 2 - 1 l  
r + and r = (28) 

V1 + 1 V1 - 1 

A key observation for obtaining a global representation for dy/dx valid 
across all vertical barriers is the following: Let w(s) be a two-state Markov 
process with states 

1 1 
W + - -  _ , W_ = 

V 1 -~ 1 V1 - 1 

and respective jump rates 

1 t 

V'I + l V1 - 1 

Then, if the origin is contained in a vertical layer with velocity V2 + 1, we 
can represent dy/dx, before collision with the first vertical barrier, as 

dv 
w: (x)= (v2 + 1) w((~2 + 1) x) 
dx 

and thus 

y(x)= (P2+ 1) w((f2+l)s)ds (29) 

Let x = X 1 denote the position of the first vertical barrier. Then, for 
X1 ~< x < X2, we have 

y ( x ) = y ( X 1 ) + ( r ' z - 1 )  f x X t w ( ( V 2 - 1 ) s + ( P 2 +  l )X~)ds  
"0  

(30) 

in t?rms of the same basic process w(s). For ~ 2  - -  1 > 0, this follows from 
the fact that { Yt} is Markovian. For  V 2 - 1  <0 ,  Eq. (30) states that the 
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path has been "reflected" about x = X~ and revisits the same horizontal 
layers. A moment of thought reveals that the jumps in dy/dx, according to 
Eq. (30), occur exactly at the horizontal barriers determined by { Y~}--as 
they should. 

This argument shows that the total y displacement after two collisions 
is given by 

~ AXl 
ZJyl = ( V 2  -1- l ) w ( ( ~ ' 2 - ~ - l ) s ) d s - ~ - ( ~ r 2 - 1 )  

~0 

• ~x~ w((P~- 1) s + (Y2 + 1) Ax,) ds (31) 
~0 

with Ax~ = X~ - 0  and Ax2 = X 2 -  X~. Analogously, the time elapsed up to 
the second vertical collision is given by 

dr= w((~'2+l)s)ds+ w ( ( Y ~ - l ) s + ( Y ~ + l ) ~ X l ) d S  (32) 
"~0 ~ 

This equation follows from (29), (30), and ~y/~t = V2 + 1, where the sign 
depends on the vertical layer. 

More generally, the above method allows for a representation of the 
functions y(x) and r(x) for all x > 0, in terms of a single two-state process 
w(s) which depends only on { Yt}, and of the positions of the vertical 
barriers {x = An}, n = 1, 2, 3 ..... Of special interest to us are the successive 
increments Ay~ and A%, after 2n collisions, for n = 1, 2, 3,.... To derive a 
convenient representation for these increments, we write 

:~= V 2 + l  
(32') 

/3= Y2-1 
and 

Pi = LlX2i- 1 = X 2 i -  1 -- X2i 2 

q i =  L1X2i= X 2 i - -  X2i 1 

for i =  1, 2, 3 ..... We also set 

i An = (c~p, +/3qi) ,  n >1 1 
i=1  

With these notations, the increment Ay n corresponding to the interval 
X2n_ 2 ~ x ~ X2n is 

~y.  = (~'2 + l) f ~~ w(~s + A._~) as 
JO 

)~q~ 
+ (V2-  1 w(fls+An l+c~pn)ds (33) 

"0 
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Similarly, the time elapsed between the 2 ( n -  1 )th and 2nth collisions is 

Am= w(~s+An_l)ds+ w(~s+A~_~+~p,)ds (34) 

To obtain these formulas, we simply applied repeatedly the method used to 
calculate Ayl and Ar~. These representation formulas for the increments 
are the basis of the calculations of the mean-square displacements. The 
increments of space and time /ly~ and Ark measure the path fluctuations 
within a correlation length of the random velocity. To compute the long- 
time/large-distance mean-square displacements, we must calculate the 
correlations between the pairs Ayk, Ayt and Ark, Art for [k-ll  =0, 
1, 2, 3,..., etc.; i.e., the correlations of the path on scales larger than the 
velocity correlation length. Notice that since w(s) is statistically translation 
invariant, the random variables Ayl, Ay2,..., and Avl, A% ..... form stationary 
sequences. 

It is readily found that 

1 limoo ~ ( [x( t )  - 91 t] 2 ) = lira ( IX. - 9, r(X.)] z ), v=  1 g3 . .~  2 ( r (X. ) )  ~ or_  

1 
lim ~ ( I -y ( t ) -  92/12) = lim ( [ y ( X , ) -  92z(X,)32) 
, . . . . .  2 (z (X, ) )  

(34') 

In words, the t ~ o~ asymptotics can be obtained by taking the limit along 
the sequence of (Markov) stopping times r(Xn), n = 1, 2, 3 ..... The random 
variable X n -  91z(Xn) can be written in the form 

X n -  V,r(X,,)= ~ [p i+q j -  91Azj] 
j = l  

[;: ;o ] = ~ z(~s+Aj 1)ds+ qJz(t~s-l-Aj l+c~pj) ds (35) 
j = l  

where 

z(s) = 1 - ~'1 w(s) (36) 

To obtain formula (35), we used the characterization of Avj in (34). A 
similar computation using (33) and (34) gives 

y ( x . )  - 9 2 r ( x . )  - w(~s  + A j _  1) ds 
j = l  

-- f2J w(fls q- Aj_ l -t- o~pj) dsl (37) 
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For simplicity, we set 

{j==-fPoJZ(as+Aj_l)ds+f]Jz(fis+Aj_l+apj)ds (38) 

and 

tlj ==- w(as+Aj 1)ds- w(fls+Aj l+~pj)ds (39) 

Using the stationarity of Ayj, A~j, the second moments of X . - V I ~ ( X . )  
and y(X.)-  V2~(X.) can be expressed as follows: 

([X.-~'l"r(X~)]2)=n(~2) +2 i ( n - j + l ) ( ~ ' ~ J )  (40) 
j = 2  

and 

([y(X~)--~'2z(X.)]2)=n(tt2)+2 ~. ( n - - j + l ) ( r / l r / j )  (41) 
j = 2  

Note that, from (34), we have 

"r(X.)- w(~s+Aj_l)dS+ w(fls+Aj_l+~pj) ds 
j = l  

and, since w(s) and {Xk} are independent and w(s) is translation invariant, 
the mean of r(X~) is 

<z(X.) ) = n(<pj)  + (q i ) )<  w(O) ) 

2n 
= _--- (42) 

V1 

In deriving this last equation, we used the explicit value for the mean of 
w(0), 

(w(O))=(r+w_ +r_w+)/(r+ +r ) 

= 1 / V l  

and the fact that pj, qj have mean 1. 
To compute the correlations (~ l~ j )  and (q l t / j )  for j = 0 ,  1, 2, 3 ..... we 

observe first that the covariances of the processes w(s) and z(s) can be 
evaluated explicitly, and are given by 
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and 

1 1 [ 2V 1 ] 
(w(s) w(s')) =-~,2 + exp - -  Is--s'l gl ~2(-2V1 - 1) (~2 -- 1) 

1 
= - - +  K e x p ( - R  Is--s'l) 

==- pw(S- s') (43) 

exp[ is-s'l] (z(s) z(s') > - V21-- 1 ( f f~-  1--~ 

= Q exp.(-R I s -  s']) 

=- pz(s - s') (44) 

These formulas follow from the theory of continuous-time Markov pro- 
cesses with finite state space (see Baht, (22) Chapter9; and Appendix B 
herein). Using these covariances, we can evaluate the autocorrelation 
functions of {~j} and {q j} by taking the expectation of the products 
~l~j, thtlj first with respect to z and w, i.e., the {u statistics, and 
subsequently averaging over pj, qj, j =  1, 2,..., (the {Xk} statistics). In this 
way, we obtain 

: ((fPl _t_ fqI )2 / (~5 z(~s)cls z(#s+~pl)ds "0 
:lfolIolpz(~(S--St))dsdstl 

([qtfql dsds') +\~o ~o p~(~(s-s')) 

+ 2 ( fPo' f / lpz (as- f l s ' -ap i )  ds ds ' )  (45) 

and, for n ~> 2, 

+ ( fol f/~ fls'- A. 1-~Pn) ds ds') 

( [ql fp'pz(fls--~xpl--(xs'-- A n 1) ds ds') 
+ \~0 "0 

([qtfqn ) +\~o .o pz ( f l s+apl - f l s ' -A ._~-~p . )dsds '  (46) 
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The expressions for (t/~) and (th t/n ) a r e  similar, with p~ instead of Pz and 
qn with negative signs in front of the "mixed" terms (fP~oao Pw) and 

Pn (fqljO IO Pw), due to the minus sign appearing in the definition of r/, in (39). 
The resulting formulas can be further reduced by computing explicitly the 
expectations over p~, qj. In Appendix B, we show that evaluation of the 
expectations with respect to p~, qj leads to the following expressions: 

(2~-_fi 1 2 f l - ~  1 ) 

1 fl- , l+Rl f l l  
(47) 

Q f + o •  R d k  4 + 2 i ( c ~ + f l ) k - c ~ f l k  2 
( r 1 6 2  -oo R 2 + k  2 ( l + i e k ) " ( l + i f l k )  ~ '  n>>.2 

(48) 

(r/2) ~ "2+2K f l - ~ l + R ~  fll+a[fll (49) 

and 

x:f+  ,edk .ilk 2 
(rl lrl")  =-~ J_~  R2 + k 2 (1 +it&)  n (1 + iflk) ~ (50) 

for n/> 2. The constants ~, fl, R, K, Q are simple functions of V1 and V2; 
cf. (32'), (43), and (44). Notice that, from (48) and (50), the autocorrela- 
tion coefficients ( r 1 ~. ), (t/1 r/. ) have a similar structure. 

A closer inspection shows that, for all e and fl, the series Z [  (t / i t / .)  
converges absolutely and 

K f +~176 R d k  
. ( q l t l . ) = ' ~ j  ~ R2+k  2 

n = 2  

~ f l k  2 

X ( l + i k c Q ( l + i k f l ) [ i ( ~ + f l ) k _ ~ f l k 2 ]  (51) 

This expression is obtained by summing the coefficients (50) by inter- 
changing the order of summation and integration, and using the formula 

1 
= 2 (1 + io&)" (1 + iflk)n 

1 

(1 + ic~k)(1 + iflk)[i(c~ + fl) k - ~flk 2 ] 
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The integral in (51) can be evaluated explicitly. Noting that, from (40), 

- ,Tj = ( ~ > + 2  ( n l , + )  
n ~ oo /'/ j 1 j = 2  

and using the expression for the series calculated from (51) given in 
Appendix B, we obtain 

The dimensionless effective diffusivity D~'2 is obtained by dividing by 
2 x (2/V1), according to (34') and (42). Therefore, we have 

1 (1 + 1921 ) (52) 
D2"2- 2 I Vii IV2I- IVy-11 + I PII. IP~- 11 

The diffusivity D* is obtained by setting V 2  = 0 in this equation. Finally, 
the dimensional expressions for D*2 and D* in (24) and (24') follow from 
this formula by restoring units. 

Next, we turn to the evaluation of the second moment (]Z7 ~f12). 
Summation of the series ~ j  (~ l~ j )  with the above method of inter- 
changing sum and integral leads, formally, to 

(~l~j)__O f +~' Rdk 
j=2 - ~ -0~ R2 + k2 

4 + 2i(~ + fl) k - a f lk  2 

• (1 + iak)(1 + i f l k ) [ i ( ~ + f l ) k - a f l k  2] (53) 

We distinguish two cases: ~ + fl = 0 and ~ + fl ~ 0. If a + fl( = 2V2) = 0, 
then a = 1, f l=  -1 ;  this corresponds to the parallel-resonant case. In the 
latter case the integrand in (53) is 

R 4 + k  2 
R 2 + k  2 k2(1 + k  2) 

It behaves like 1/k  2 for k ~ 1 and hence the integral diverges. This O ( k  -2 )  

infrared divergence reflects the fact that the mot ion  o f  the x coordinate  is 
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superdiffusive in the parallel-resonant case, and thus v=  1 is not the 
appropriate exponent. The decay of correlations can be estimated precisely 
from the formula (48): In fact, 

Q c +~ Rdk  4 + k  2 
= ~  J-o~ R2 + kZ ( l + k2)" 

,/-; ~ J_+ R:+(k/v/;): (1 +k:/~)" 

4 Qf+~ 
Rr~ ~ e-k~ dk 

4 1(�9 
Therefore, the second moment ( (Z  ~/)2 ) grows like 52~ = 1 Y~ = t ]k - j[ - 1/2 = 
0(n3/2), and the longitudinal displacements are superdiffusive (v= 3/2). 
Using (47) and (48), we can actually compute the asymptotic mean-square 
displacement exactly. In fact, 

n3/2 / , ~J =~nn (~2)  +n__VS/: 2 (n - - j+  1)(~1~/)  (54) 

The first term is negligible as n ~ oo. The last one can be written in the 
form 

+ ~ 1 7 6  4 + k  2 ] 
2Q f ~=2 ( n - j +  1)(i~-~-y)/j  ~n3/2  _ +  / 

2 Q f  += Rdk  [1 ~2 ( j - i )  4+(k2/n)]  (55) 

Since, for j/n ~- x, n ~ oo, 

(1 + kZ/n) j "~ e k2x 

the term in brackets in (55) can be regarded as a Riemann sum 
approximating the integral 

4 ( l - - x )  e Xk~dx 
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Substituting in (54), we conclude that 

1 ( ( )2 )  ~ff~ d k  ~1 (l--X) 
limo~ ~ X is = R :o 

_ 8 Q  f l  1 - x  

R,SJo ,5 
32Q 

3R x/re 

16 

371 x ~  

e xk2 d x  

(56) 

TO obtain the asymptotic result in real time, we use ( z n ) ~  2 n i P s .  Multi- 
plying (56) by (V1/2) 3/2, we obtain, in dimensionless variables, 

n ~ o~ t 3/2 - -  I V11 
1/2 

The dimensional result (25) follows by restoring units, t ~  t a / U ,  x ~  a x ,  

V1 -~ VI U. 
Finally, if 0 ~ + f l = 2 V 2 # 0  , the series Zj~2 ( ~ j )  is absolutely 

convergent and its sum is given by the integral (53). In Appendix B we 
evaluate explicitly this sum in terms of Q, R, ~, and ft. Using the expression 
for the variance in (40) and the explicit evaluation of the integral, we 
conclude that 

< [ X  n - VI~'(X)] 2 ) 2 
lim 

IV1[ ) 
x 1 + i~11,1~22_ 11 + ip2[. i ~ _  11 

The dimensionless diffusivity D*I can be computed by dividing by 
2(Zl ) ~ 2 • 2/[ Vii. We obtain, accordingly, 

1 ( 1+ L IV1[ ) 
h*l -21v21 IVll" ['V2-1[-~-[V2[ �9 I -2V1- II 

and the final result (23) is obtained by restoring dimensions. 
This concludes the proof of Theorem 5. �9 
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Remarks. 1. The parallel-resonant case. The relation found between 
the asymptotic mean-square displacements of the x and y coordinates 

<[y(t)]2> 
,-~ 2D* 

t 

ae= [4(2_I' q 
t 3/2 (2D*) '/2L3 \=/ J 

is identical to the one in the Matheron and de Marsily (MdM) model{7); 
see, in particular, Zumofen eta/ .  (17) The difference between MdM and the 
present situation is that in the former, the particle is undergoing advection- 
diffusion in a stratified medium, driven by a Brownian motion (molecular 
diffusion) which is independent of the velocity statistics. In the present 
model there is no molecular diffusion; nevertheless the particle experiences 
an "effective" transverse diffusion through multiple collisions with the 
vertical barriers. Therefore, the situation is similar to the so-called 
"nearly-stratified" models discussed by Avellaneda and Majda, (16) in which 
it is shown how the small-scale features of a perturbed stratified flow 
contribute to the transverse effective diffusivity on the one hand, and how 
the infrared portion of the spectrum of the velocity gives rise to anomalous 
diffusion with v = 3/2. On the scale of the wider horizontal layers, the 
system behaves effectively like the MdM model. This point is discussed in 
more detail below (Section 4.3). 

2. The diagonal-resonant ease. Expansion of the effective diffusivities 
D* t and D*2 in the vicinity of IVtl = U, I V2l = I OI shows that, to leading 
order, 

a U  2 
D,* (57) 

4([ I V I [ -  lot I + I I ~21-  I01 I) 

and hence that D*i diverge near the resonant values. As mentioned earlier, 
this is due to the disparity of particle motions according to whether they 
originate at a nearly "stagnant" cell or not. From the point of view of the 
piston-flow model, the existence of stagnation cells distributed throughout 
the'medium gives rise to a very wide mixing region characterized by D*.i in 
(57). This is well confirmed by numerical simulations (see Section 5). 

3. The case p = l ,  IV, l#O, or IV2l#O, The proof of Theorem5 
applies only to mean velocities with p > 1. However, the methods of proof 
extend to the regimes IV1[ = U, IV21 < U, or vice versa, since time is still a 
monotone (but discontinuous) function of x or y. Using a similar 
Markovian argument, it can be verified that D* 1 and D~2 are continuous up 
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to the edges of the subcritical box (depicted in Fig. 1), except in a vicinity 
of the diagonal resonance. 

4. The Markovianization. This technique for establishing diffusive 
behavior for equations of type (1) was first introduced by Kesten and 
Papanicolaou. (23) These authors studied the case IVI "> 0 (infinite mean-to- 
fluctuations ratio) for more general velocity fluctuations; they established 
rigorously the vafidity of the Kubo approximation in this limit. 

4.2. Asymptot ic  Probability Distribution for 171 �9 172r 0 

We have shown above that the stochastic processes y ( X , ) -  V2~'(Xn), 
n >~ 0, and X n -  V1 z(Xn) admit a Markovian representation in terms of the 
two-state process w(s) depending on { Yt}, and the Poisson process {Xk}. 
In the case V1 V2 r 0, the asymptotic mean-square displacements are Fickian 
(v= 1). This raises the question of characterizing the asymptotic distribu- 
tion of the fluctuations which are expected to be normally distributed. 
Here, we shall not give a complete proof of the asymptotic normality of 

(1/x//-t)[X(t) - f~l t] and (1/x//t)[y(t) - V2/], but only point out the main 
ingredient in the proof of this result. (2~) In fact, from the representations for 
Xn - PlZ(Xn) and y(X,)  - r'2z(Xn) obtained in the proof of Theorem 5, we 
note that these stochastic processes can be viewed as Markov processes 
which are functions of the strongly mixing processes {Xk}, {Y t}, in the 
sense of Ibragimov (24) and Billingsley (ref. 25, Chapter 4). A deeper analysis 
along these lines allows us to apply a suitable form of the Central Limit 
Theorem to conclude that the fluctuations are indeed normally distributed. 
Asymptotic normality is confirmed clearly by the Monte Carlo simulations 
(Section 5). 

4.3. Asymptot ic  Distributions in the Paral lel-Resonant Case 
(V1 " ~ 2 = 0 )  

A crucial property of the model for characterizing the asymptotic 
distribution of 

1 
t3/4 Ix(g) -- V1 t],  t >> 1 

is that, if I Vll > U and Vz = 0, then the process y(t)/x~t "thermalizes" to a 
Gaussian distribution with variance 2D*, conditionally with respect to the 
distribution of the Poisson barriers { Yt}. Simply put, the asymptotic 
distribution of y ( t ) / xF  is seld-averaging with respect to {Yt}. This is 
expressed precisely in the following result. 
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Proposition 6. If IVll > 0  and V2=O, then the paths {y~(t), 
0 ~< t ~< 1 }, e > O, defined by 

y~(t)=~y(~), O~<t~<l, e >O 

converge in distribution as e ~ O  to a Wiener process {(2D*)~/2fl(t), 
0 ~< t ~< 1 }, conditionally on { Yt}. Specifically, let q~[y(. )] be an arbitrary, 
continuous functional in path space and let <.1 { Yt} > denote conditional 
expectation with respect to { Yt}. Then, 

lim <~b[y~(.)] [ { Y,} > = E{~[(2D*) 1/2 fl(.)] } (58) 
~ 0  

where E{.} denotes integration with respect to the Brownian path fl(t), 
0 ~ < t ~ l .  

Proof. We use dimensionless variables for simplicity. The representa- 
tion for t/y obtained in (39) gives for e =  1, f l = - 1  (corresponding to 
V 2 = O )  

fo fly= w(s+Aj_l)ds-  w( -s+Aj_ l+pj )  ds 

= w(s) ds 
1 

Consequently, for all m > 0, we have 

y(Xm) = ~ 'tj 
j = l  

=~ f~' w(s) ds 
j = l  -1 

= fo ~m w(s)  ds (59) 

We conclude from this that, for all 0 ~< t ~< 1, 

y(X[.t]) _ l r |A~.,~ w(s)  ds 
,Y 

where [x ]  = integer part of x. Decomposing w(s) into its mean and 
fluctuating parts, w(s) = <w> + w'(s), we have 

Y(X[,o) AEm]+ 1 ( AE~ 
-<w> w,(s)ds i60t 
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The first summand is a normalized sum of independent random variables. 
Therefore, by Donsker's invariance principle, (25) (w)AEnt3/x/~ converges 
in distribution to a Wiener process with mean zero and variance 

2 0"2=(W) 2 ((Pl--ql) 2 ) = ~  
v~ 

Hence, the corresponding diffusivity D* is 

~r 2 2/V 2 1 
D * =  

2 ( % )  4/V1 2V1 

as calculated previously. It remains to show that the second term in (60), 

1 [At< w'(s) ds 

converges to zero in probability. In fact 

f, l l  f AM w'(s)d~ >~} 
Prob [ ix /~  2o 

= k=+~176 ~ Prob {~nn ~/E"'aw'(s)ds > ~; Ok <~AE"~ (61) 

where 0 is an arbitrary positive constant. If Ok <~ A E,,I/X/~ < O(k + 1 ), then 

l_l_cAE.,lw,(s)d s 1 ~~ s -T..o 
~< 0 .max Iw'(s)l 

s 

= 0 - max 
1 V1 V1 V1 + 1 

Therefore, for given ~ > 0, if 0 is chosen sufficiently small, we have 

1 fAE< _ 1 f0k./ ;  C~ 

7oo  w, s ds 7 j  ~ 

for k such that Ok x/~ <<. A E,,2 < O(k + 1) x/~. Because of this, using (61), we 
obtain 
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t Prob w'(s) ds > c~ 
~0 

+oo { 1 [ok,/-~ ~ AE.q < O(k + 
~< g=~'-~ Prob ~nnJ ~ w'(s) ds >-~;Ok<. 

+~ {2- - f  ~  ds ~} = ~ Prob w'(s) >~ 

1)} 

x Prob {Ok <~AE"~ < O(k + l )} (62) 

In this�9 last equality we made use of the independence of w'(s) and An. 
Now, by the Ergodic Theorem, we have 

lira Pr w'(s) >-~ = 0 
n ~ c o  

for all integers k. Therefore, all the summands of the series in (62) converge 
to zero. The convergence of the entire sum to zero follows from the 
estimate 

Prob{0k.  N 0,k+l,t. Prob { 1,} ,5; 
,~  e - 02(M 1)2/2~2, n >> 1 

which shows that the tail sums in (62) can be made uniformly small by 
�9 taking M large enough. 

The conditional convergence ofy(t) /x/7 to (2D*) 1/2 fl(t)in the sense of 
(58) follows, since we have established that 

Y(XE"'J) F(t)+G(t) (63) 

where F(t) depends only on the Poisson process {X~} and converges to 
(2D*) 1/2 fl(t) in distribution, and the remainder G(t) converges to zero in 
probability. �9 

We now give a sketch of the characterization of the asymptotic 
distribution of 

g)x( t ) 1 
t3/4 = -  t3/4 [x(t)-- V1 t] (64) 
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based on Proposition 6. From the basic equations of motion, we have 

6x(t) 1 f~ t3/4 t3/4 UI(y(s)) ds 

=tl/4 fo Ul[ta/2{Y(St)']7\ tl/2 j j  ds (65) 

We know from Proposition 6 that y(st)/~/~ converges, conditionally on 
{ Yt}, to a Wiener process (2D*) 1/z fl(s). Moreover, an elementary applica- 
tion of the Central Limit Theorem shows that the rescaled velocity in (65), 

tl/4Ul(ta/2y) 

which depends only on { YI}, converges in distribution to a Gaussian white 
noise N(y) satisfying 

<N(y)> = 0  

(U(y) N(y') > = aO26(y - y') 

Since {y(st)/~ft} converges conditionally on {Y t} to (2D*) 1/2 fl(s), N(y) 
and fl(s) are necessarily statistically independent. Moreover, it can be 
shown that formal passage to the limit in (65) is justified, although this is 
mathematically subtle because N(y) is not a continuous function of y.(2~) 
Passage to the limit in (65) gives 

~x(t) I~ 
t3/4 ~ N((2D*~ ) 1/2 ~(s)) ds, t>> 1 (66) 

with N(y) and fl(s) independent. 
Using this result, we conclude the following result. 

T h e o r e m  7. The asymptotic probability density P(x) of 6x(t)/t 3/4 
has Fourier transform 

~(k)=E {exp(-Ek2aO2/2(2D*)l/2] f~ f2 6(fi(s)-fl(s'))dsds')} (67) 

ProoL Using (66), we have 

/ 
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Taking the expectation with respect to the Gaussian white noise first, we 
obtain 

~(k)= E {exp (-(k2aO2/2 ) fo f~ 6((2D* )l/2 [fl(s)- ~(s') ]) ds ds') } 

The result (67) follows by using the scaling relation 6((2D*) 1/2 y ) =  
(2D*) - m  6(y). �9 

This characterizes the asymptotic distribution of 6x(t)/t 3/4 completely. 
Inverting the Fourier transform in (67), we obtain the real-space 
characterization 

P(x) = f o  1 x2/2"2f(a2) da 2 (68) (2~a2)1/~ e 

where f ( a  2) is the probability density of the random variable 

~2 aU2fo=fo (2D,)~/2 6[/~(s) - /3(s ' )]  ds ds' (69) 

Thus P(x) is a mixture, or "packet," of Gaussians. The dispersion of this 
packet is due to the large sample-to-sample fluctuations in the horizontal 
velocity component UI(y). The probability P(x) is analogous to the one 
found by Avellaneda and Majda (8'9'16) and Zumofen et al. (17) for a class of 
advection-diffusion equations in a stratified random velocity. In particular, 
see ref. 17 for a study of the tails of the density P(x) for Ix[ >> 1. 

5. M O N T E  C A R L O  S I M U L A T I O N S  FOR V ~ O  

This section constitutes a central part of this study. We report the 
results of Monte Carlo simulations for several values of V1/U and V2/U, 
done in both the subcritical and the supercritical cases and for various 
directions of the mean velocity, including in the vicinity of the two resonant 
regimes. In all calculations, we consider the dimensionless version of 
Eqs. (3), obtained by introducing the dimensionless variables (26). In these 
new variables, the equations of motion become 

"dx'(t') 
dt' = U'~(y'(t'))+ F'~ 

dy'(t') _ U'2(x'(t')) + ff~ (70) 
dt' 

822 72 '5-6-27 
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Here U] and U; have amplitudes -t-1, and the grid spacings are exponen- 
tially distributed with mean 1. A typical simulation procedure, for fixed 
values of V'I = V1/U and V~ = Vz/U, involves integrating (70), starting 
from x'(0) = y ' (0)  = 0, over 8192 independent, random realizations of the 
velocity V'(x', y ' )  on squares of dimensions ,-~215, centered about (0, 0). 
This number of realizations corresponds to one quadrant of the Connec- 
tion Machine 200 parallel computer, with each processor solving in parallel 
the equations over a separate realization. In other cross-velocity studies, we 
use (8192)/4 = 2048 processors for a given value of the mean velocity, so as 
to "process" four velocity points per run. The dimensionless time for which 
"thermalization," or dynamical equilibrium, is achieved is of the order 
t ' a x  ~ 5 • 103.  For  such times, our choice of the box size is such that the 
Langrangian particles remain well within the dimensions of the boxes, 
without ever reaching the boundaries. This ensures that the statistics are 
welt resolved by the computation with the aforementioned number of 
configurations, configuration size, and maximum dimensionless time. Error 
bars o n  the computed diffusivities are on the order of a = (2048)-1/2= 0.03. 
We note that the observed (typical) thermalization time is considerably 
shorter than the one found in other models of advection-diffusion in 
stratified fields, which can be as large a s  tma x = 105.  (17) We believe that the 
shorter run times needed to resolve the fluctuations in our model are due 
to the random nature of the grid--as opposed to similar models based on 
a fixed regular grid, say, in which the velocity components take values _ O 
randomly. The reason for this is that the exponential distribution simulates, 
in a coarse-grained sense, a "trend" of successive "layers" which have 
identical values for U1 or U2. The random barriers correspond to barrier 
locations at which trends are broken, and the present model avoids 
considering intermediate times at which the velocities remain unchanged. Of 
course, the "fixed" barrier model with random velocities and the presen t 
random barrier model with alternating velocities are in the same universality 
class as far as the long-time, large-scale properties are concerned (Section 2). 
We leave the discussion of computational aspects and algorithms to Section 6 
and pass to the discussion of the results. 

5.1. Mean  Veloci ty  Al igned w i t h  the Coordinate Directions 

We consider first motions in which the mean velocity V ' =  (V~, 0) is 
perfectly aligned with one of the coo.rdinate directions (parallel-resonant 
case). This corresponds to V' making an angle of 45 ~ 135 ~ 225 ~ or 315 ~ 
with the fluctuating velocity in each random cell. The runs study the 
statistics of x' and y '  for values of ff~ -- n x 0.125, with n = 1, 2,..., 12. First, 
we compute the Lagrangian history of y'(t'), 0 ~ t' ~ tma x = 5 • l 0  3, and 
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consider the moments of if(F). Figures 7a, 8a, and 9a show the evolution 
in time of 

1 
7 ( [Y'(t')]2)~ 

in which ( . ) n ,  denotes averaging over noncycling trajectories in the sub- 
critical case and ( , ) , c  = ( )  = usual averaging if P] ~> 1. By definition, the 
computed transverse diffusivities are 

1 1 q / 2 
D*(comp) 2 tma ~ 

They are shown in Table II. We also show the values of the product 
P'tD*(comp). The observed values of P'~D*(comp) are in excellent agree- 
ment with the exact result for D* in the supercritical case. We have also 

Y 
c~ 0.8-  

0 . 6 -  

0,4- 

- - 1 0 ( 0 0  20(00 30100 40(00 50~OD 
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1,2- 
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-L" 0.8 
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10tO0 20100 30tO0 4000 ] 5000 
1' 

b) 

Fig. 7. Lagrangian history for the scaled mean-square displacements, with V] = P~/ (7~0 .5  
and 9 2 = 0 .  (a) Evolution of ([y'(t')]~)/t'; {b) evolution of ([x'(t')-(x'(t')),,c]2)~,~ 
[2D~_(comp)] 1/2/(t')3/2. The calculations are run for tma x = 5 X 103 dimensionless time steps. 
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computed, but not shown here, the unconditional second-order moments in 
the subcritical case 

1 1 
- - - -  [ Y  ( tmax) ]  5 D*(uncond)=  ( , , 2 
2 t~.x 

where the average is taken over all particles. We find that the relation 

D*(uncond) = p.~D*(comp) (71) 

holds for all velocities V'I in the simulations. This means that only the 
noncyeling particles contribute to the transverse effective diffusivity at 
long times. Relation (71) is not entirely obvious a priori, because 
closed streamlines can be arbitrarily large. In other words, the phase 
space splits into "cycling realizations," which can lead to arbitrarily long 
paths (with small probability), and "noncycling realizations," which occur 
with probability P,o. The calculations show that the closed-streamline 
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~ 0 . 8 -  
m 
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0.4- 

1010 0 20100 30100 40100 
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a) 

/ 

10tO0 20100 30100 40100 
t '  

b) 

Fig. 8. Same as Fig. 7, with V~ = 1.0 and V~ = 0. 

5 0100 

50100 
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contribution to the long-time diffusivity is negligible, suggesting that the 
distribution of lengths of cycling particles for P~ # 0 has very short tails. To 
test for Gaussianity of the transverse displacement, we compute the flatness 
factors 

[y (t)] ).c / t 4 

F2(t')= , , 2 2 
( [y  (t)3 ).c 

(as before, ( . ) n o =  ( ' )  if V'I ~> 1). The graphs of Lagrangian histories 
in Figs. 10a, lla, and 12a show, unequivocally, a convergence of F2(t') to 
the Gaussian value of 3.0; see also Table IV. Finally, we evaluated the 
empirical probability densities of the rescaled values y'(tmax) / 
E2D*(comp) tmax] ~/2. The histograms show very good agreement with the 
standard normal density (2n) - m  exp(-y2/2)  in all cases (Figs. 13a, 14a). 
We also computed, but do not display here, the empirical probability 
density functions by averaging over all particles (cycling and noncycling) 
for y'(t'~x)/[2D*(uncond)t~nax ] .  The resulting curves are well fitted to 
Gaussians superposed with an additional strong peak at y = 0, reflecting 

1 . 2 -  

1.0- 

0.8- 

~ 0 . 6 -  

1 0100 20LO0 30100 40100 
t '  

a) 

50100 
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Fig. 9. 
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Same as Fig. 7, with V'1 = 1.5 a n d  V~ = 0. 

50100 
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Table II. Computed (Dimensionless) 
Transverse Diffusivities in the Parallel-Resonant 

Case, wi th  0.125~< ~ ~<1.5 and V~=0 ~ 

F~= Px/U D~(comp) F~D~(comp) 

0.125 10.414 1.30175 
0.250 4.01417 1.00354 
0.375 2.18174 0.818153 
0.500 1.45485 0.727425 
0.625 1.07633 0.672706 
0.750 0.815168 0.611376 
0.875 0.667139 0.583747 

1.000 0.515336 0.515336 
1.125 0.460339 0.517881 
1.250 0.411231 0.514039 
1.375 0.372596 0.512319 
1.500 0.342922 0.514383 

a For F] /> 1, the dimensionless ratio F'lD~_(comp) 
(= P1D*/aO 2) agrees well with the value of 0.5 pre- 
dicted by the theory. For 0< V]< 1, this ratio 
increases as F'~ decreases. 

the fact tha t  the uncond i t iona l  d i s t r ibu t ion  for the y d isp lacements  is then 
a mix ture  of  a Gauss i an  with diffusivity D * ( c o m p ) ,  occurr ing  with 

p robab i l i t y  Pnc, and  of a D i r ac  mass  at  y = 0, occurr ing  with p robab i l i t y  

1 - P,o. 
The  x d i sp lacements  were cons idered  next. W e  cons idered  the 

L a g r a n g i a n  histories  of the quant i t ies  

1 
(t,)3/4 [ x ' ( t ' ) -  (X'(t) >no ] 

averaging  over  the ent ire  conf igura t ion  space if ff'l ~> 1 and  over  noncycl ing  
conf igura t ions  if ff'l < 1. The  t ime histories  of the normal i zed  second 
m omen t s  

S(t') [2D*(c~ 1/2 
- < x  ( t ) > ~  >.~ (t , )~/~ < E x ' ( t ' ) -  ' ' 

were c o m p u t e d  for 0 ~< t '  ~< t~,x = 5 x 10 3 (Figs. 7b, 8b, and  9b). The value 

V 1 . of the scal ing exponen t  v 3/2 is conf i rmed accura te ly  for all values of  - '  
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In the supercritical cases and in subcritical regimes near V1 = 1, we obtain 
values of the scaled second moment 

Sma~ = [2D*(comp)] 1/2 
(tmax)3/2 • ( [ X ' ( t ~ a x ) - -  (x'(t'max))nc]2)nc 

which are consistent with the prediction for the Matheron-de Marsily 
model [see Eq. (25)], which is Smax = 1.064. The values of Smax are given 
in Table III. Notice that Smax decreases slightly as P] becomes less than 1 
and then increases again as V] decreases further. These variations cannot 
be explained by the "uncoupled" Matheron-de Marsily model alone. They 
indicate that the notion of an "asymptotically independent" walker y'(t') 
sampling weakly correlated horizontal layers with velocities +_ 1 breaks 

3.4 

3.2 

C ~" 3.0 

2.0 

1 0100 20100 30t0 0 40100 50100 
t' 

a) 

3 . 4 -  

3.2- 

3.0- ,T 

2 . 8 -  

2 . 6 -  

1 010 0 2 010 0 3 010 0 4 010 0 5 010 0 
t ' 

b) 

Fig. 10. Time evolution of the flatness coefficients: (a) F2(t'), corresponding to diffusive 
transverse displacements; (b) Fl(t'), corresponding to superdiffusive longitudinal dis- 
placements. The dimensionless mean velocity is V'~ = 0.5, V~ = 0. 
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Same as Fig. 10, with V'I = 1.0 and V~ = 0. 
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Table III. Scaled M e a n - S q u a r e  
Displacements of the x Coordinate  
in the Paral le l -Resonant  Regime a 

[7~t( = V 1 / U )  Smax 

0.125 2.37642 
0.250 1.38242 
0.375 1.08846 
0.500 0.977351 
0.750 0.965704 
0.875 1.01149 

1.000 1.089 
1.125 1.10411 
1.250 1.08705 
1.500 1.07994 

o V = (VI, 0), Srnax = ((6x)2)(2D*)l/Z/(tmax) 3/2. 
For ff'~ /> 1, the computed values agree 
reasonable well with the theoretical value 
Sm,x = 1.06. As V] decreases into the subcriti- 
cal regime, Sin,• decreases and then increases 
again for small V] to Sm,x(0.125) -~ 2.37642. 
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Same as Fig. I0, with V'~ = 1.5 and P~ = O. 
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Table iV, Flatness Factors at the Largest 
Computed Time t'r.ax = 5x 103~ 

g i (  = g l / ~ )  F~(t'ax) F 2 ( t ' a x )  

0.125 3.66729 3.44865 
0.250 3.29743 3.35187 
0.375 3.23094 3.2144 
0.500 3.06737 3.51008 
0.625 3.06871 3.0459 
0.750 2.99027 2.93681 
0.875 3.18939 3.06072 

1.000 3.25388 3.11967 
1.125 3.10637 3.06313 
1.250 3.17016 3.023 
1.375 3.17282 2.9376~ 
1.500 3.16595 2.99158 

a In the supercritical case, the computed values agree reason- 
ably well with the predictions Fl(tmax)23.24 (ref. 17) and 
F2(t'~) = 3. For  subcriticat velocities the computed values 
tend to increase as P'a -* 0. 
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down as 9]  approaches 0, due to the increasingly stronger coupling 
between the x' and y' motions. The flatness factors 

([x'(t ')-(x'(t ')).c]4).,  
t t  t 

F l ( t ' )  = ( I x ' ( / ' )  , t 2 2 ' /max 
- <x ( t ) > . ~ ]  >.~ 

are computed in each case as well and are shown in Table IV. We find that, 
unless the mean velocity F'j is very small, we obtain reasonable agreement 
with the asymptotic value of the Matheron-de Marsily model, 
l imc~ co Fl(t '  ) = 3.24, calculated by Zumofen et al. (17) For very small values 
of P] we find that Fl(t'a~) exceeds the asymptotic value and is as large as 
3.67, indicating that the tails of the distribution become longer. We also 
give plots of Fl(t') as a function of time for a few values of the mean 
velocity in which the thermalization time is shown to be t'a~ ~ 5 X 103 
(Figs. 10b, l lb ,  and 12b). 

Finally, the empirical density for scaled displacements in the x 
direction is shown in a few representative cases (Figs. 13b, 14b). In the sub- 
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Empirical probability distribution functions for 9'1=0.5, ff~=0: (a) y'(tm.x)/ 
[-2D~_(comp) tmax]l/2; (b) [X'(tma~)- (X'(t'max)nC]/(t'~lax) 3/4. 
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Fig. 14. Same as Fig. !3, with V'~ = 1.5 and V~ = 0. 

critical case, we computed the empirical densities unconditionally as well 
and found, as before, that the corresponding density is bimodal, with a 
strong peak at x = 0 corresponding to the fraction of trapped particles. In 
Figs. 13b and 14b only the conditional densities of [1/(t')3/g]Ex'(t' ) -  
(x ' ( t ' ) )nc]  are shown. This study confirms well that the basic mechanism 
for superdiffusion in the model in both the subcritical and supercritical 
cases is effectively described by the Matheron-de Marsily model of 
advection-diffusion in a ~tratified flow. 

5.2.  T h e  Case  V1 �9 V z ~ 0  

We consider the general case when a nonzero mean velocity is not 
aligned with either coordinate direction. By symmetry, it suffices to study 
mean velocities such that 0 < V; ~< V'I. In these regimes both coordinate 
processes are Fickian. When either component of the scaled mean velocity 
is greater than or equal to 1, we have shown that the diffusivities D~'I and 
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D*2 are given by formulas (24) and  (24'). If both  components  of the dimen- 

sionless mean  velocity are < 1, the exact formulas are not  expected to hold, 

a l though the processes are expected to be Gaussian.  
We investigate the s i tuat ion numerical ly  by solving Langevin  equa- 

t ions with scaled mean  velocities if '  = (p/4, q/4), for 1 ~< p ~< q ~< 6 and  for 
p and  q no t  bo th  4, and  with 2048 independent  realizations per parameter  

set. These 20 groups of s imulat ions are conducted for a dimensionless time 
t 'ax = 5 x 103, by which thermal izat ion has occurred. Table  V illustrates 

V2D11 and  that in the supercritical region the computed  values of - '  * V 1-' D22" 
agree very well with the analytical  values. Table VI indicates that  the flat- 

nesses of the coordinate  processes are also very close to 3, indicat ing a 

Gauss ian  distr ibution.  Note  that  Table V shows that  the measured values 

Table V. Scaled Diffusivities for ~71 " V2 ~ 0a 

(= V1/U) (= 92/0) (comp) (comp) [Eq. (24)] [Eq. (24')] 

0.250 0.250 0.800782 0 . 7 5 6 3 7  0.766667 t 0.766667* 
0.500 0.757995 0 .601123  0.690476* 0.880952 t 
0.750 0.727046 0 .692465  0.653846 t 0.961538 t 
1.000 0.615136 0 .980242  0.633333 1.03333 
1.250 0.574151 0.94874 0 . 5 9 5 2 3 8  0.97619 
1.500 0.564353 0 .903717  0 .572727  0.936364 

0.500 0.500 0.70846 0.71973 0.833333 t 0.833333 t 
0.750 0.79158 0.75127 0.82 t 0.98 t 
1.000 0.82362 1.1239 0.833333 1.16667 
1.250 0.69864 1.03104 0.705128 1.01282 
1.500 0.641219 0 .930725  0 .642857  0.928571 

0.750 0.750 0.869393 0.899385 1.07143 t 1.07143 t 
1.000 1.30803 1.60744 1.35714 1.64286 
1.250 0.812114 1.20876 0.887097 1.14516 
1.500 0.753819 0 .973013  0 .735294  0.970584 

1.000 1.250 1.35353 1.55692 1.38889 1.61111 
1.500 0.842674 1.10022 0.9 1.1 

1.250 1.250 0.928475 0.93629 0 . 9 4 4 4 4 4  0.944444 
1.500 0.720294 0 .835508  0 . 7 5 9 7 4  0.811688 

1.500 1.500 0.703318 0.704979 0.7 0.7 

a Values are compared with the analytical formulas (24), (24'), which are valid only for 
p = max(V'l, V;)>i 1. Comparison with the formulas is made in all cases. The predictions for 
subcritical velocities, for which agreement with (24), (24') is not expected, are indicated with 
a dagger. 
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differ from the diffusivity formulas (24), (24') in the subcritical regime. This 
is not surprising, due to the strong difference between the supercritical 
dynamics, which is essentially Markovian (Section 4), and the subcritical 
regime, in which the statistical structure of the paths is much more 
complex. 

Finally, we consider the interesting "diagonal-resonant regime" 
(Vl,' V~)~ (1, 1). The formulas for diffusivity yield Dii-*- +oc at the mean 
velocity V ' = ( I ,  1). To study the behavior near resonance, we consider 
sequences of mean velocities given by 

and 

vU 

Table VI. Flatness Factors at t~max for V 1 �9 V z # 0  

(= V1/U) (= V2/U ) F:(/max) F2(tmax) 

0.250 0.250 3.17113 2.85691 
0.500 3.07298 2.97798 
0.750 2.99628 3.02925 
1.000 3.08793 3.09515 
1.250 3.05959 2.78072 
1.500 3.01326 3.0132 

0.500 0.500 2.85941 2.83451 
0.750 2.85083 2.96737 
1,000 3.10962 3.08019 
1.250 2.87347 2.98388 
1,500 2,84699 2.97905 

0.750 0.750 3.06965 3.30814 
1,000 2.94808 3.00763 
1.250 2.91541 2.8978 
1,500 3.03533 3.04495 

1.000 1,250 2.98425 3.11788 
1,250 2.95214 2.90004 

1.250 1.250 2.88694 2.97846 
1.500 2.90756 2.85447 

1.500 1.500 3.02312 3.17572 
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with e = +2  -k, 6 ~< k ~< 9. The "paths" (72) and (73) correspond to different 
approaches to the resonant value. On the basis of the exact formulas, we 
know that the divergence of Di* depends on the path taken to (1, 1). The 
computations show that, for the path (72), we have 

0.25 - - t  , - - r  , 
V1D=2~- V 2 D l l  ~ Isl < 1 (74) 

which agrees with the explicit formulas in the supercritical region 
(Fig. 15a). [Note  that the edges of the square bounding the subcritical 
region are supercritical (p > 1) and thus the exact formulas are expected to 
apply for ~ positive and negative.] For the path (73), we find that, in the 
supercritical region (e > 0), we have 

0.125 
~ D ~ ,  1 - '  , = V I D 2 2 ~  e <  1 (75) 
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Fig. 15. Behavior of the effective diffusivities near diagonal resonance. (a) 2 kV'ID* 2 plotted 
for V 2 = l  and (11) V ~ = l + 2  -k, ( A )  f f ' 1 = 1 _ 2  -k. (b) 2-kF'lD*2 plotted for (11) 
V'x = V~=  1 + 2  ~, (& )  V'I = V ~ =  1 - 2  -k. Notice that in (b) the asymptotic coefficient is 
smaller as resonance is approached from the subcritical regime. 
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as predicted by (24), (57). On the other hand, approaching the diagonal 
resonance from the subcritical region (e <0) with the path (73) gives the 
different value 

0.1 
P~D*a - '  * = V1D22 -~ 7-7,, lel ~ 1, (76) 

lel 

(Fig. 15b). This shows again that the exact formulas (24), (24') break down 
in the subcritical case. 

6. C O M P U T E R  S I M U L A T I O N  OF THE R A N D O M  VELOCITY  
FIELD 

We now describe the simulation of the random velocity constructed 
as a sum of two stratified orthogonal fields. For practical purposes, the 
computational domain is restricted to a square region of side 2L. Several 
independent velocity fields can be generated from a single Poisson process on 
the line. Accordingly, consider {en }, a sequence of independent exponential 
random variables with mean 1. Such a sequence is produced by transform- 
ing an i.i.d, uniform sequence with the function g(x)= -log(x). Define 
{Zn} "by Z n = 2 ~ = l  ek, and let N(x)=supk {kl Zk<~x}. Then N(.) is a 
Poisson process and {Zn} is the sequence of jumps of this process. The 
barriers inside the computational "boxes" are sampled from the Poisson 
process N(-) as follows: first, consecutive intervals of length 2L of this pro- 
cess are assigned to each box, in order to represent the vertical random 
barriers {Xk}. Second, an additional sequence of consecutive segments of 
length 2L is generated and a segment is assigned to each box to represent 
the horizontal barriers { Yt}. This sampling procedure is consistent with the 
assumption of statistical independence of {Xk} and {X,} in each box and 
of statistical independence of different boxes. 

6.1. The Algebra of Congruent ia l  Random Number  Generators 

A linear congruential generator (LCG) is used to generate the initial 
i.i.d, sequence of uniform random variables. The use of arithmetic random 
number generators is particularly well suited because, using the properties 
of the linear congruence, we minimize memory allocation (the environment 
is not stored, but instead computed). This is important in the simulations, 
given the memory storage available for each processor in the CM 200. A 
computation of this scale with direct storage would not be feasible. 

To explain better the use of arithmetic in our simulation, we recall 
some algebraic properties of LCGs. An LCG is a map f :  Sm ~ Sm defined 
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by f (w) = (aw + c) mod m, where m > 1 is an integer, S m = {0, 1 . . . . .  m -- 1 }, 
a, c ~ Sm, and a and m have greatest common divisor 1. The last condition 
is necessary and sufficient for f to be invertible (via Euclid's algorithm) so 
that f represents a permutation of Sin. Multiplication on the group of linear 
congruential generators modulo m is defined by 

[a, c] [d, f ]  = [(ad) mod m, (af + c) mod rn] 

for [ a , c ] = a x + c m o d m  and [ d , f ] = d x + f m o d m ;  this formula 
represents composition of LCGs. The identity is defined by e =  [1, 0]. 
In particular, raising an LCG to a natural number power k can be 
done in o(log(k)) operations by the recursive doubling formula 
f ~ =  (fk air 2)2. fkmod 2. This formula plays a pivotal role in initializing the 
positions of several particles independently and in parallel. The order of the 
LCG f as an element of the permutation group is defined as min{s [ i f =  e, 
s = 1, 2,... }; Knuth (26) gives criteria for f to have maximal order. 

We choose an LCG f w i t h  maximal order rn (=  2 32 in our case). The 
LCG f represents a cyclic permutation where the sequences defined by 
Wo6Sm and wn=f(wn_l)  for n > 0  have a uniform distribution on Sin. 
Since f has inverse f - l =  fm-1,  we generate sequences in Sm with the for- 
mulas Wo=S, wn=f(w~_l), and wn=f-l(w~+l) ,  where s is the seed. The 
sequence {Z~[n=0,  1,...} of jumps of the process N(-) is approximated 
by the formulas Z0=0 ,  Zn=Z,+l - lOg(w, /m) ,  and Z n = Z n _ I +  
log(wn_ 1/m). We represent the relative position of a particle with respect 
to the horizontal or vertical barriers as an ordered pair (WN(x), X-- WN(xfl, 
the random integer and the offset from the previous jump, and use the 
recurrence relations for w, and Z n to compute relative motions. Each 
coordinate of the particle lies within an interval [Zn, Zn+l), for some n, 
between two jumps of the point process N(-). 

6.2. S imulat ion of Particle Dynamics 

We compute the dynamics of each particle using a simple discrete 
event simulation. The simulation consists of an intialization followed by a 
"strobe" loop. 

During the initialization, each particle is positioned at the origin of its 
velocity field and its velocity is calculated as the sum of the mean velocity 
Vr and the value of the lJ field at the particle's position. The positioning 
process, which requires billions of logarithms and other floating point 
calculations, is carried out in parallel. For a sample of realizations of order 
2K with L = 2  Iv, intialization requires only 5.33 cpu min. Moreover, the 
"random integer-offset" method of state representation makes it possible to 
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store the state of each particle in less than 1 Kbyte. Therefore, the 
initialization can be read from a file rather than calculated. 

The strobe loop allows the dynamics of each particle to be simulated 
with only periodic synchronization of the collection of particles. At the 
beginning of the loop, a strobe time s is set equal to the current time for 
each particle. Next, the strobe time is incremented by one strobe period ds. 
Then, under the control of the event loop, each particle progresses 
randomly from one event to the next until it reaches the strobe time. Once 
all particles have reached the strobe time, the statistics for each group of 
particles are calculated. If the strobe time is not equal to the final strobe 
value, the process is repeated. 

The event loop repeats a series of computations in parallel until each 
particle reaches the strobe time. First, the difference dt between the particle 
time t and the next strobe time s is calculated. Second, dt is compared to 
the times at which the particle would encounter the next change in sign in 
each shear field and to the time at which the particle would return to the 
origin if it moved at the current velocity. Then, dt is set to the minimum 
of these. If dt is equal to the return time, then the particle is marked as 
cyclic and its cycle period z is recorded. The particle flows for the time dt 
at the current velocity, the new velocity and time are calculated, and the 
loop is repeated as necessary. 

It becomes necessary to make an exception to the above sheme in the 
case of certain cyclic particles. When the cycle period of a particle is shorter 
than a single strobe period, the time of that particle is advanced for the 
maximum number of cycle periods less than a strobe period ds. This cycle 
optimization greatly improves the running time of the program in regimes 
where cycling occurs while maintaining the accuracy of the particle states 
at the strobe times. In all parameter regimes, 5000 time unit simulations 
with four groups of 2K independent particles require between 10 and 
15 cpu rain. (This usually translates to less than 30 rain real time because 
the small memory and running time requirements of our simulation give it 
a high priority in job scheduling.) After the final strobe time, the current 
state of the particle array is saved. This allows probability distribution 
functions to be computed and, if necessary, to resume the calculation for 
longer times. 

One future improvement of this simulation would be to sum several 
shear fields of varying amplitudes, length scales, and directions to simulate 
more general velocity fields corresponding to the Hamiltonians (5). This 
would be possible in the current scheme because the addition of each shear 
field (i.e., of an additional parallel array of random barriers) adds fewer 
than 100 bytes to the memory requirement per particle. 

822/72/5-6-28 



1286 Avellaneda et  al. 

7. COMPARISONS WITH THE ISICHENKO-KALDA THEORY, 
DIA, AND CONCLUSIONS 

7.1. Comparison with the Isichenko-Kalda Theory 

Isichenko and Kalda ( IK)  (13) proposed a general theory for calculating 
box-exit probabilities and the fractal dimension of levels of a random 
Hamil tonian-- the "statistical topography"--based on the analogy between 
level sets of random Hamiltonians and the hulls of percolation clusters. The 
IK theory concerns both monoscale Hamiltonians, which are stationary 
functions (i.e., statistically translation invariant), and hence characterized 

b y  a typical amplitude /~ and correlation length a, as well as multiscale 

Hamiltonians, which are nonstationary functions, characterized by a growth 
exponent h: 

+ 

In the case of monoscale Hamiltonians, Isichenko et aL ~12~ proved the 
existence of a critical level, based on a "flooding" topological argument. 
Using an analogy with percolation clusters near threshold, they derived the 
scaling relations 

p.c(L) ~ (L/a)-~ 

with 

( 2 ( L ) )  oc (L/a)  ~ 

c~=l 

1 7 
7 = 1 + - =  

v 4 

Here v is the exponent characterizing the divergence of the cluster diameter 
near percolation. The value v = 4/3 is believed to be the exact exponent 

for 2D percolation based on conformal field theory; see Saleur and 
Duplantier. ~28) The error bars for v reported in the literature are o-~ ,~ 0.02 
(see ref. 29 and references cited in ref. 28). 

For  multiscale Hamiltonians, corresponding to h > 0, the situation is 
different. Isichenko and Kalda ~13) used an interesting argument based on 
separation of scales to derive the exponents e and 7, which now depend on 
h as well as v. The IK formulas for these exponents are 

v 
~ ( h )  = ( 1  - h )  - -  

l + v  

1 - h  
~(h) = 1 + - -  

l + v  
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In our model, we have h = 1/2 (Section 2), which corresponds to 

e(1/2)=0.2857 

and 

?(1/2) = 1.2143 

exactly, if we take v = 4/3 and with errors cr~ = o-~ < 0.02 if the numerical 
uncertainty in the exponent v of ref. 29 is taken into account. Comparing 
this with our computed values, e=0.21 _+0.017 and ? = 1.28 +0.015, we 
find a discrepancy with the theoretical exponents of the order of at least 
5%. This notwithstanding, the agreement with IK theory is rather good. 

If we set aside the possibility of statistical error as a source for the 
discrepancy between the computed and the theoretical values, then a 
theoretical explanation must be sought. We believe that one reason for the 
difference is that the multiscale Hamiltonian Ho has no critical level and 
its statistical topography is quite different from that of monoscale 
Hamiltonians. This suggests that the analogy with correlated percolation 
theory--the paradigm behind IK theory for ct(h) and ?(h)--breaks down. 
It is also possible that the discrepancy is due to higher-order corrections to 
the values of e and ~ obtained by the so-called scale-separation argument 
(ref. 15, w 

7.2. Compar ison  w i t h  M e a n - F i e l d  Theor ies  for  Ef fect ive  
Di f fus iv i t ies  

Consider the equations of motion in the integral form 

x ( t ) -  ~'~ t = U~(y(s)) ds 

y ( t ) -  ~'2t = U2(x(s)) ds 

(77) 

(78) 

The Kubo, or weak-coupling, approximations for Di*, i =  1, 2, are 
obtained by replacing in the right-hand side of (77) and (78) the particle 
position (x(s), y(s)) by its mean position, (P~s, Vzs). This corresponds to 
second-order perturbation theory for Di* in the parameter O. (m19) The 
corresponding approximate diffusivities are 

D*(Kubo) = (Ui (P j )  Ui(O)>ds, i# j ,  i , j =  1, 2 (79) 
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Using the explicit formulas for the velocity autocorrelation in (79) to 
compute the integral, we obtain 

aU 2 
O*(Kubo) = 

2 IPjl 

This weak coupling approximation is exact /f one set o f  layers is removed, 
e.g., D~'I (Kubo)= the diffusivity corresponding to the velocity V(x, y ) =  
(vl  + Ul(y), ~2). 

The direct interaction approximation (DIA) accounts for order-1 
velocity fluctuations using a mean-field approach. Here, we derive the DIA 
for the model in Lagrangian variables; see ref. 3 for a similar treatment, 
and refs. 2 and 6. Accordingly, assume that the particle position in the 
right-hand side of (77)-(78) takes the form 

x(s)  = V~ s + [2D*I(DIA)] 1/2 tim(S) (80) 

and 

y(s)  = V2 s + [-2D*2(DIA)] 1/2 ]~2(s) (81) 

where D*t(DIA) and D~'2(DIA) are undetermined effective diffusivities, 
accounting for coherent effects of velocity fluctuations, and fli(t), i= 1, 2, 
are Brownian paths which are independent of U(x, y). Substituting 
(80)-(81) in (77)-(78), we can compute the large-time mean-square 
displacements ( [ x ( t ) -  91(0] 2) and ( [ y ( t ) -  V2(t)]2). In this way, the 
following algebraic equations for D*(DIA) are found: 

D*i(DIA)= aO2 1 + 
2 I V21 t + a [ V2ITD~'2(DIA 

and 

D*2(DIA) = a02 1 + (82) 
2 IPal a I Vll/D*I(DIA) 

These equations can be reduced to a single equation for the dimensionless 
quantity 

6 -  ] ~'1DT(DIA) i , j =  1 or 2, j # i  (83) 
a~2 

namely, 

6 = ~ ( 1 +  1 + - ~ )  
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o r  

where 

2 6 2 + 2 ( w - 1 ) 6 - w = 0  

IV1 V2[ 
W ~ -  02 

(84) 

The positive solution of Eq. (84) is 

1 6=~ [1 + (w2+ 1)~/2- w] 

1 
=~[l+w+(w2+l) l /2  ] (85) 

Substituting for w and 6, we obtain 

Di*(DIA)= a02 1 + p292~1/2 ' 
2 I~l IV1V2[  "~-( O4 "~- - - 1 - - 2 /  

In particular, the theory predicts that 

I Vll D~'z(DIA)= I V2l D*I(DIA) 

and 

i , j =  1, 2, i r  

(86) 

(87) 

D~*(DIA) > Df*(Kubo) (88) 

In the supercritical case, we can compare these approximations with the 
exact formula 

O~-21~. I l+l~el.l~2_O21+l~jl.iP~_02 I. (89) 

Clearly, Di*>Di*(Kubo ) for V1V2~;~0. As gl---~0 or V2~0,  the corre- 
sponding transverse diffusivity converges to the Kubo value and the 
longitudinal diffusivity diverges. Therefore, the DIA accounts qualitatively 
for the enhancement of diffusivity due to fluctuations. Note, however, that 
the true diffusivities do not satisfy (87). Moreover, as gl---~0, 
D*2(DIA)--* 2D~'2(Kubo) and hence the DIA does not predict the correct 
transverse diffusivity [ = D~'2(Kubo)] near parallel resonance. 
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Table VII. Comparison of the Computed Dimensionless Diffusivities Scaled 
by the Dimensionless Velocit ies and the DIA a 

V~D~I V]D~ VjDi~-' * 
P~ P~ (comp) (comp) (DIA) 

0.000 0.125 1.30175 - -  1 
0.250 1.00354 - -  1 
0.375 0.818153 - -  1 
0.500 0.727425 - -  1 
0.625 0.672706 - -  1 
0.750 0.611376 - -  1 
0.875 0.583737 - -  1 
1.000 0.515336 - -  1 
1.125 0.517881 - -  1 
1.250 0.514039 - -  1 
1.375 0.512319 - -  1 
1.500 0.514383 - -  1 

0.250 0.250 0.800782 0.75635 0.969726 
0.500 0.757995 0.601123 0.941391 
0.750 0.727046 0.692465 0.914963 
1.000 0.615136 0.980242 0.890388 
1.250 0.574151 0.94874 0.867595 
1.500 0.564353 0.903717 0.8465 

0.500 0.500 0.70846 0.71973 0.840388 
0.750 0.79158 0.75127 0.8465 
1.000 0.82362 1.1239 0.809017 
1.250 0.69864 1.03104 0.777124 
1.500 0.641219 0.930725 0.75 

0.750 0.750 0.869393 0.899385 0.792424 
1.000 1.30803 1.60744 0.75 
1.250 0.812114 1.20876 0.716616 
1.500 0.753819 0.973013 0.6901 

1.000 1.250 1.35353 1,55692 0.675391 
1.500 0.842674 1.10022 0.651388 

1.250 1.250 0.928475 0.93639 0.046301 
1.500 0.720294 0.835508 0.625 

1500 1500 0.703318 0.704979 0.606107 

a In the parallel-resonant case, dashes indicate an infinite longitudinal diffusivity and the DIA 
prediction applies only to the value of V~D*l(comp). Note: Values are taken from Tables II 
and V and we exchanged the indices in the values from Table II for better comparison. 
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AS (t Vii, [V2I) ~ (U, U) (diagonal resonance) the effective diffusivities 
diverge. The DIA, on the other hand, remains bounded near diagonal 
resonance and satisfies 

* 2 + x/2 ~ (0.72) x aO Di*(DIA) ~ Dii(Kubo ) x 1 + 

The sharp increase in the actual diffusivity [Eqs. (74), (75)] is not accoun- 
ted for by the mean-field approximation. In Table VII we compare 
Di*(DIA) and Dg* for several values of V1, V2 in the supercritical region. 

Finally, an assessment of the predictions of the DIA in the subcritical 
region can be made. We consider the dimensionless ratios 2ri~---'VjDi~*' = 
~'jD*/aO 2, where D* = actual diffusivity, or = DIA. The results are presen- 
ted in Table VII. They show that the DIA does not perform well near the 
diagonal and parallel resonances. The agreement is better away from 
resonances, especially for V'I ~ P;,  which is not so surprising, given that 
the approximation implies rll = r22 [Eq. (87)], which is expected to be true 
only if VI = V2 [Eq. (86)]. Table VII shows that the DIA approximation 
can take values both above or below the true diffusivities, according to the 
values of vr We can summarize the above analysis by saying that a 
coherent, or self-consistent approximation, which takes into account velocity 
fluctuations through low-order correlation functions (e.g., two-point 
statistics), cannot account for the influence of  the streamline topology 
(stagnation, trapping, anomalous diffusion) on the effective transport 
coefficients unless IV[ ~ lJ. 

7.3 .  C o n c l u s i o n s  

We constructed and analyzed a model for advection of particles by 
a random, incompressible velocity field. In this model, the Hamiltonian 
is not stationary, but instead has Brownian fluctuations, i.e., 
( IHo(x ,y )12)~( lx l+ly l ) .  Moreover, to analyze the influence of 
streamline topology on the transport, we neglected molecular diffusion. The 
particles were driven by a uniform drift. 

For the case rr = 0, the problem reduces to the study of the isolines of 
the random Ilamiltonian H o. We computed the statistics of percolating 
streamlines, both exit probabilities and fractal dimensions. Agreement with 
the theoretical exponents predicted by Isichenko and Kalda based on per- 
colation theory was found to be good, although a discrepancy of 5-6% 
exists, even if statistical errors are taken into account. We believe that this 
discrepancy is due to the assumption of a virtual separation of scales in the 
IK calculations. On a more fundamental level, we established that the 
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statistical topography of the random Hamiltonian H o is completely dif- 
ferent from the topography of "monoscale" Hamiltonians, for which the 
correspondence of the transport problem with percolation theory is exact. 
In fact, we showed that all streamlines are closed (localized) because every 
such streamline is always enclosed within another one with a higher or 
lower value of Ho. We believe that this is a universal feature of multiscale 
Hamiltonians, which have growing rms amplitudes (IH(r)]2) 1/2~ 
Irl h, Irl > 1. 

For V ~ 0, there is a net motion of particles, but if/9 < 1, a fraction of 
streamlines is closed. This regime can only be studied by Monte Carlo 
simulation. If/9 >/1, the trajectories are all open and we computed explicitly 
the asymptotic diffusivities. We found that two interesting resonances 
occur: if V1. V2 =0,  then the longitudinal fluctuations are superdiffusive 
with exponent v = 3/2. This exponent can be related to the Matheron- 
de Marsily model of diffusion in a stratified medium. If VI. Ve ~ 0, the 
motion is diffusive in all directions, but for [Vii, IV21 ~ 0, the effective 
diffusivity becomes very large, due to partial "trapping" of particles in 
"slow" pockets. These particles linger at far distances from the overall mean 
position Vt, producing a wide dispersion. The "diagonal resonance" 
described here is not accounted for by the direct interaction approximation. 

Monte Carlo simulations in the subcritical regime show that the above 
descriptions of particle transport remain approximately valid for p < 1 if 
one considers the statistics of noncycling particles only. 

Finally, the question of whether these effects are model dependent or 
generic poses itself. Regarding the statistical topography, we believe that 
the absence of critical streamlines is generic in the class of multiscale 
Hamiltonians. The superdiffusive motion with exponent 3/2 is due to the 
stratified nature of the ongitudinal velocity component. However, the 
model supports the idea whereby if the mean velocity rr points in a 
direction along which the fluctuations have long-range correlations, then 
superdiffusion can arise. The blowup of the diffusivities near diagonal 
resonance is of generic nature, in the following sense: for systems in which 
the mean-to-fluctuations ratio is ~ 1, the probability is that some "stagnation 
pockets" with weak velocities will form, while in other regions ~r and U(r) 
will align. This disparity may give rise to "resonances" in the effective 
diffusivity as [V]/U varies. One can expect this resonance to exist for a wide 
class of non-Gaussian flows. 

APPENDIX A. PERCOLATION OF STREAMLINES 

This appendix contains the mathematical proofs of Propositions 2 and 
3 of Section 3. 
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Proof of Proposition 2. The Hamiltonian for the case V = 0 is 

I4o(X, y)= Wl(y)- W2(x) 

where Wi are continuous-time random walks, normalized so that Wg(0) = 0, 
i = 1; 2. In the proof, it is convenient to write Ho in the form 

Ho(x, y ) =  Wa(y ) + W'z(X) (A.1) 

where W'z(X)= -W2(x) is again a random walk with the same distribu- 
tion. Henceforth, we use (A.1) for H0 and drop the prime over the second 
function. 

Let BL be the square of side 2L centered about (0, 0) and let 0BL 
denote its boundary. We claim that 

Prob{Ho(2, ~ ) <  - 2  for all (2, 3~) e c~BL, for some L} = 1 (A.2) 

which is the statement of Proposition 2. To calculate this probability, we 
write the event in (A.2) (for a given L) explicitly in terms of the walks Wi 

(i) max WI(y) + W2(L) < - 2  
O<~ y<~L 

(ii) max WI(y)+ W2(L)< - 2  
--L<~y<~O 

(iii) max W~(y)+ W2(--L)< - 2  
O<~y~l 

(iv) max W~(y)+ W2(-L)  < --2 
--L<~y<~O 

(v) WI(L)+ max W2(x )< - 2  
O ~ x ~ L  

(vi) WI(L)+ max W2(x)< - 2  
--L<~x~<O 

(vii) WI(--L)  n t- max W 2 ( x ) < - 2  
O<~x<~L 

(viii) W I ( - L ) +  max W2(x)< - 2  
--L<~x<~O 

(A.3) 

Conditions (i) and (ii) state that Ho(2, y) < --2 on the vertical side of the 
square 2 = L, - -L  ~< )~ ~ L, and the other six conditions correspond to the 
negativity of H o on the remaining sides. The reason for splitting the condi- 
tions of negativity for each side into two is that the paths { Wi(z), z >>. 0} 
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and {Wi(z), z~<0} are independent. Let us define a four-dimensional 
random walk B(~)= [Bl(r), B2(/:), B3(v), B4(7:)], for r >~0, by 

Bl('C) = Wl("g ) 

B2(~) Wl(-~) 

B3(~) W2(z) 

B4(r ) W2(--'c), "c/> 0 

The negativity of H0(x, y) on 8BL can be expressed as an event pertaining 
to the behavior of the four-dimensional "path" B(r) for 0 ~< z ~< L. We take 
advantage of this as follows: let QR denote a "cube" in four-dimensional 
space, defined by the inequalities [r = (Xl ..... x4)] 

- 2 R < x ~ < R - 2 ,  1~<i~<4 

Let re denote the first exit time of the walk B(r) from QR. The inequalities 
(i), (ii),..., (viii) will be satisfied with L = rR if the walk exists QR through 
the portion of the boundary FR defined by 

FR = {r~SQR I - 2 R  <xi<~ - R ,  1 <~i~<4} (A.4) 

In fact, if the walker exits the box Q R through FR, then max0 ~< ~ _<,R Bi (~) < 
R -  2, and, from (A.4), we have 

( R - 2 )  + Bi(rR)< --2, 1~<i~<4 

for all i. This ensures that (i)-(viii) are satisfied for L = zR. The contention 
of Proposition 2 is that, as the walk B(z) evolves, it must exit QR through 
FR for some R. To see this, we observe that as R ~  ~ ,  R-1B(rR 2) 
converges in distribution to a four-dimensional, standard Brownian motion 
with variance aU 2 (see Section 2). Therefore, the conditional probability 

PR - Prob{B(z2R) ~ F2R I B(zR) r FR} 

can be estimated, for R>> 1, in terms of Brownian probabilities. More 
precisely, 

pR ~ Prob{/~(T2)~ P2 I/~(T1) r F1}, R>> 1 (A.5) 

where T1 is the first exit time of/~(.) from the "box" 

01 = {r: - 2 < x i <  1, 1 ~<i~<4} 

and P1 is the portion of the boundary of 01 defined by 

F I = { r E S Q l l  - 2 < x i < - l }  
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Similarly, in (A.5), T2 is the first exit time from the box 

Q2= {r: - 4 < x / < 2 ,  1 ~<i~<4} 

and [ '2  is the portion of the boundary of Q2 defined by 

F2= {reSQ~ ] - 4 < x i < - 2 }  

Since Q1 is contained in the interior of (~2, by Harnack's principle (see, 
e.g., ref. 27), we have 

Prob{fl(T2) e F21/~(T1) r Px} 
/> C Prob{/~(T2)eP2 I/~(0, 0 ) = 0 }  (A.6) 

where C is a positive numerical constant. The probability on the right-hand 
side of (A.6) is strictly positive, since the surface area of F2 is positive. All 
this shows that 

Prob{B(~2R) e F2R [B(rR)r  R ~ I  

for some fixed positive p, and hence 

q R -  1 -pR-Prob{B(%R)q~F2R [ B(~R) r FR} < 1 --p (A.7) 

for R large enough. Let 

p x  = Prob{B(rz,)r for n < 1, 2 ..... N} 

Then, from (A.7), 

PN = azu 1 x q2,v-2 x - �9 - x ql  

~< const x (1 _p )U  

Using this estimate, we calculate the probability that the Hamiltonian is 
>~ - 2  on 8Be for all L. We have 

Prob{H0()~, 37) >~ - 2  for some (2, f )  E 8B L, for all L} 

~< Prob{H0(2 , )7) >~ -2 ,  for some (2, 9) e 8BL, 

L = 2 N, for all integers N} 

= lim PN 
N~o~ 

~< lim const x (1 - p)N  
N~oo 

= 0 .  

This concludes the proof of Proposition 2. [] 
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Proposition 3 gives a quantitative estimate of the percolation 
probability for a box of size L, L >> 1, in the form of the power law 

pnc(L) <<. CL-~, L >> 1 

where C is a constant and ~ > 0. To obtain this result, we refine the proof 
of Proposition 2, taking advantage of the scaling relation 

Z" R ~ R 2 

for the exit time of a Brownian motion from a box of size R. 

Proof of Proposition 3. We have 

Prob{lr(t)l < L, for all t} 

~> Prob{H 0 < -2 ,  on •B t, for some l~< L} 

Therefore, 

p,c(L) <~ Prob{Ho ~> -2 ,  somewhere on 0Bt, for all l~< L)  

=< Prob{B(z2,) r n,  for all n = 1, 2, 3 ..... 

such that 2" ~< L } 

Set, accordingly, 

E N = {B( ' t ' 2 .  ) r F 2 .  , for all n ~< N} 

Then, for any positive integer N, we have 

pnc.(L) = Prob{streamline exits B L and z2N ~> L} 

+ Prob{streamline exists BL and v2N < L} 

<~ Prob{z2~ ~> L} + Prob{EN} (a.8) 

The second probability was estimated in the proof of Proposition 2. To 
estimate the first term, observe that Q2 N is contained in the hypersphere of 
radius p u = 2  u+2 centered at (0, 0, 0, 0). Hence, 

Prob{r2u ~> L} ~< Prob{sup IB(r)l < PN} 
T~<L 

=Prob{  sup I p u l B ( r p 2 ) l < l }  
2 

z ~ L i p  N 

The stochastic process pNXB(zp 2) has independent, identically distributed 
increments and converges in distribution to a homogeneous Brownian 
motion. Using this, it can be shown that 
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Prob{ sup IpN'B(~P~)t < 1} 
z <~ L/p 2 

L 
<~ e -C(L/p~'), for p-Tx>> 1 (A.9) 

where C is a constant independent of L and N. This inequality 
corresponds, formally, to the standard estimate for the exponential decay 
of probability that a Brownian path satisfies sup~<L/p2N[B(z)[ <1 for 
L/p2N >> 1. (27) A justification of (A.9) using the theory of large deviations is 
given in Apelian. (2~) 

Putting together (A.8) and (A.9), we conclude that 

E p,~(L)~<exp -C~ ~ +C2exp( - sN)  (A.10) 

Here C~ and C2 are constants, and we used the estimate in the proof of 
Proposition 2 

Prob(EN) ~< C2(1  _ p ) N  =_ C 2 e - S U  

i.e., we set s =  - ln(1 - p ) .  We now choose N as a function of L, in the 
following fashion: Let y be a fixed integer > 2, and choose N such that 

L = 2 yN 

(Strictly speaking, this makes sense only for L = 2 v, but the case of general 
L is handled in the obvious way.) The choice 7 > 2 ensures that L/p2= 
L/2 2N+4 ~ 2 (7-2)N diverges as N--+ or. Substituting N =  [-1/(7 log 2)] log L 
in (A.10) gives 

Pnc(L ) ~ exp[--  C1L (1- 2/~)] + C2L-S/(~,log2) 

The first summand is negligible compared with the last one for L >> 1. 
Therefore, we conclude, as desired, that 

p,c(L) <~ CL -~, L >> 1 

where C is slightly larger than C2 and c~ = s/7 log 2. [] 

A P P E N D I X  B. C A L C U L A T I O N  OF T H E  C O V A R I A N C E S  (~l~j) 
A N D  (qlqj),j>~l, IN T H E  P R O O F  OF 
T H E O R E M  5 

This appendix provides some complements to the proof of Theorem 5. 
Specifically, we derive the formulas for the autocorrelation functions p,, 
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and Pz [Eqs. (43), (44)] and using these functions, we compute the 
covariances { ~ l ~ j ) a n d  (ql~/j)for allj>~ 1. 

B1. Autocorre la t ion  Functions Pw and Pz 

From the theory of stationary, two-state continuous-time Markov 
processes (22) we have the following result: if ~(s) is such a process, with 
states ~+ and ~_ and corresponding jump rates p+ and p_,  then 

( ~ ( s ) ) = ( p + ~ _  +p_~+)/(p+ +p ) (B.1) 

and 

<if(s) ff(s')) = <if(O))2 + r + r _ ( ~  + - ~_  )2 (r+ + r _ )  2 e x p [ - ( r +  + r  I s - s ' [ ]  (B.2) 

In the case of the Markov process w ( s )  introduced in Section 4, 

~ +  = w +  = 1 / ( P ,  + 1)  

_ = w _  = 1 / ( ~ ,  - 1)  

p +  = f'+ = l / ( V  1 "q- l )  

p = r  = I / ( V I - 1 )  

(B.3) 

Substituting these values in (B.1) and (B.2), we find that 

and 

1 
(w(s))  ==-,  

V1 
s>~O 

1 1 
pw(s-  s') = ( w ( s ) -  w(s') ) = - - +  

V I ( V  1 - 1) 

( 2V1 I s - s ' l )  • exp ---T--- 
V1-1  

(B.4) 

The process 

z ( s )  = 1 - f f  l w ( s )  

can be analyzed using the above results. From (B.4), 

( z ( s )  > = O, s >>. 0 
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and, since z + = 1 o V1 w + = 1/( gl -1- 1 ) and z_  = 1 - V~ w_ = - 1/( f ' l  - 1 ), 
using (B.2), we obtain 

2V1 Is-s ' l)  1 exp - e  <z(s) z(s') > - r _ 1 v ,  - 1 

B2. Eva luat ion  of  (~l~Ji) and (q lq i )  

At this point, we set 

and 

so that 

K =  

Q = ~  

R = ~  

--2 --2 V ~ ( V 1 -  1) 

1 

2V~ 

and 

l Ke_nl~ 1 pw(s) = f---~ + (~.5) 

p.(s) = Qe ~1~1 (B.6) 

We refer the reader to the formulas (45) and (46) for ( r  and ( r 1 6 2  
The integrals 

fPa ~ f~l p~(o~(s- s')) ds ds ' 

and 

f~' ;~' p~(B(s -s '))  ds ds' 

can be shown to be equal, by substituting formula  (B.6) for Pz, to get 

2Q 
R---- i (e - R~'~'~ - 1 + Rap1) (B.7) 



1300 

and 

Avellaneda e t  al. 

2_Q_Q (e RZq~ 1 + Rflql) 
R 2 (B.8) 

respectively. 
Taking the expectation values of (B.7), (B.8) with respect to the 

exponential distribution, Prob(pl > z) = e -~ and Prob(q~ > r) = e -~, we 
obtain the values 

2Q 2Q 
and (B.9) 

l+Rc~ l+R[ f l [  

respectively. The "mixed" terms 

fo' f f '  pz(~S - ps' - ~p~) ds ds' 

and 

f~l f fx p~(fls + ~Pl - c~s') ds ds' 

can be evaluated in a similar fashion. They are both equal to 

Q ~ fll+R~+fl---~l+glfl~----~] 
(B.IO) 

Putting together (B.9) and (B.10), we obtain 

2Q 2Q +2Q(  1 1 

=2Q l+Rc~ + fl---~ I + R ] - ~  

which is formula (47) of Section 4. 
The calculation of (r162 for n>~2 is best done in Fourier space, 

using the formula (B.6) 

p~(s )=Qe  -Rlst 

Q f + ~ R eikS dk 
7z ~ R2 + k 2 
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The integral 

fo~ fo~npz(C~s+ An ~-~s')dsds' 

is therefore equal to 

Q ~ + ~  R d k  [fO~ ~pl))dsds, 1 
-- -~ j ~ R2 + k 2 

In the last expression, we have made the change of variable s ' ~  ( p ~ - s ' )  
in order to exploit the independence of the exponential term (A,,_~- ePl) 
and the limit of integration Pl. The expectation value of this quantity with 
respect to the exponential variables {pj, qj} is readily computed because 
the double integral in brackets is equal to the product 

eiketpl- 1 eik~pn 1 
- -  X e ik~ql x e ik~p2 x �9 �9 x e ik[lqn-1 

ik~ ik~ 

Evaluation of the expectation leads to 

(fPoX fo"pZ(O~s + An , -~s ' )  ds ds') 

Q r  +~ Rdk 1 
J (B.11) ~z ~ R2+kZ( l+iek) , ( l+i f lk ) ,  1 

The remaining three integrals in (46) can be computed in a similar way. 
We find that 

(fP~ f:"p~(c~s-- fls'--A~ 1-~p~) ds ds') 

O~+~ Rdk 1 
= RJ_~ RZ+k 2 (1 +&k) n (1 +iflk)" (B.12) 

( (P" ~q~ pz(O~s + An_ l -- fls'-o~pl) ds ds') 

Q ~ + ~ R dk 1 
J (B.13) 

7z _~ R 2 + k  2 (1 +ikcQ" ~ (1 +i[3k) ~-~ 

822/72/5-6-29 
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Q f +oo R dk 1 

- o~ R 2 + k2 ( l + ika ) ~ - ~ (1 + ifik)" 
(B.14) 

Adding together the integrals in (B. 11)-(B.14) yields 

Q C + ~  R d k  4+2i(c(+fl)-cq~k 2 
= T  J oo R2 + kZ (l  + i a k ) " - ( - ( T i ~  

(B.15) 

which is formula (48) in Section4. The calculation of (q ,q , ) ,  n~>l, is 
similar, with slight differences. For brevity, we omit the details of the 
calculations leading to the final results, 

1 2k 2K 

( ~ )  = ~--~ + ~ + a + I/~1----~ 

( ~ 1 fl 1 ) 
- 2 K  a - fl 1 + R----~ + f l_~  1 + e ifll. 

= - - + 2 K  - - + - -  
~ I + R ~  c(-fl  l + R  Ifll 

and 

( ~ l ~ n )  --R f + ~  R d k  af lk  2 
=z t  -oo R 2 + k 2 ( l + i o & ) " ( l + i f l k )  ' '  n>~2 

B3. Explicit Evaluation of the Diffusivit ies a~l and D~2 

From Section 4 and the preceding calculations, we find that 

n = 2  

=(r ~ 2--~Qf +~176 R d k  4 + 2 i ( a + f l ) k - ~ f l k  = 
.=2 n _ ~  R 2 + k  2 ( l + i a k ) " ( l + i f l k ) "  

2 Q f  + ~ 1 7 6  
= ( ~ > +  R~+k~. 

-- oo 

4 + 2i(~ + fl)  k - -  e f l k  2 
X 

(1 + it(k)(1 + iflk)[i(o~ + fl) k - c~flk 2] 
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To evaluate the integral, which Contains a denominator of order ik for 
k ~ 1, we split the domain of integration into [kl ~< ko and ]k[ > k0, where 
k0 is a small cutoff, and then pass to the limit as ko --+ 0. In this way we find 
that 

2_Qf +~ R d k  4 +  2 i ( o ~ + f l ) k - ~ f l k  2 
_ ~ R 2 + k 2 (1 + it&)(1 + iflk)[i(~ + fl) k - r 2 ] 

2 2 Q f  R d k  
- _ _ + l i m  R2 k2 

V1. V2 o~o /l: ikl~>ko + 

4 + 2i(~ + fl) k - ~flk 2 
• 

(1 + i~k)(1 + iflk)[i(~ + fl) k - ~fik 2 ] 

2 2 V1 
= _ _ - + - - -  (B.16) 

V , . V 2  V, V2 VIlP~-lt+P2IF2-1I 
where the first term corresponds to the contribution from a neighborhood 
]k] ~< ko, k ~ 1, and the second term is obtained by computing the integral 
by partial fraction expansion of the integrand and letting ko -+ 0. Multiply- 
ing (B.16) by 1/(2(% ) ) =  VJ4, we obtain the desired expression for D*I in 
dimensionless variables. 

The calculation of 

n=2 

2 0  ( + oo R dk ~flk 2 

= + - -  J k= -oo R 2 +  ( l + i o & ) ( l + i f i k ) [ i ( ~ + f l ) k - ~ f l k  2] 

is simpler because the integral is absolutely convergent and can be easily 
computed using the expansion for the integrand in partial fractions. The 
details of this straightforward, but tedious, computation are omitted. 
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